Optimization of Sensor Morphology and Sensing Performance in a Non-enzymatic Graphene FET Biosensor for Detection of Biomolecules in Complex Analytes

Recent advances in ultrasensitive electrical biosensors using graphene nanostructures such as nanowalls and nanopores have increased the surface area-to-volume ratio. These structures provide signals at low biomolecule concentrations that are generally insufficient for vital measurements, especially...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of electronic materials 2025, Vol.54 (1), p.285-299
Hauptverfasser: Senthil Kumaran, V. N., Venkatesh, M., Alqahtani, Abdulrahman Saad, Mubarakali, Azath, Parthasarathy, P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 299
container_issue 1
container_start_page 285
container_title Journal of electronic materials
container_volume 54
creator Senthil Kumaran, V. N.
Venkatesh, M.
Alqahtani, Abdulrahman Saad
Mubarakali, Azath
Parthasarathy, P.
description Recent advances in ultrasensitive electrical biosensors using graphene nanostructures such as nanowalls and nanopores have increased the surface area-to-volume ratio. These structures provide signals at low biomolecule concentrations that are generally insufficient for vital measurements, especially in complex physiological analytes, making practical deployment difficult. A new, reproducible, and scalable chemical technique for constructing smooth graphene nanogrids enables molar biomolecule detection in field-effect transistor (FET) mode. We examine how pore morphology affects the sensing capability of label-free graphene nanoporous FET biosensors, aiming for sub-femtomolar detection limits with a good signal-to-noise ratio (SNR) in blood or urine serum. Despite problems including drain–source current sensitivity overlap due to high quantities of nonspecific antigens, our improved graphene nanogrid sensor detected hepatitis B (Hep-B) surface antigen in serum at sub-femtomolar levels. In serum containing 3 nM hepatitis C (Hep-C) as a nonspecific antigen, a pore diameter of 30 nm and length of 120 nm had the highest SNR and detected 0.25 fM Hep-B. We used a graphene nanogrid FET biosensor in heterodyne mode (80 kHz to 2 MHz) to quantify Hep-B down to 0.3 fM in blood using a probabilistic neural network (PNN) to reduce Debye screening effects. The performance of the PNN exceeded that of the polynomial fit and static neural network models by limiting quantification errors to 10%. Electrical resistance was linearly related to the Hep-C virus core antigen (HCVcAg) concentration (80–550 pg/mL) in real-time tests. After improvement of functionalization parameters, the SNR increased 70%, detecting 0.20 fM Hep-B virus molecules with 60% sensitivity and 6% standard deviation.
doi_str_mv 10.1007/s11664-024-11531-w
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3147284704</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3147284704</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-4331c6ca82728a7e493d5eebeb52bc90999defeff509ef1c039f045c77790efe3</originalsourceid><addsrcrecordid>eNp9kE9PGzEQxS1UJNK0X4CTpZ5dPGt7N3ukaQlI4Y_UVuJmOc44LNq1F3sjCN-D74vDUnHraaR57_1m9Ag5Bv4dOK9OEkBZSsYLyQCUAPZ4QCagpGAwK28_kQkXJTBVCHVEPqd0zzkomMGEvFz3Q9M1z2ZogqfB0d_oU4j0MsT-LrRhs6PGr9-2jd_QG4wuxM54i7Tx1NCr4Bn6512XAZYuounv0CM9-_WH_mhCGmE5Qn_igPbfkSx1oUW7bTHtOfPQ9S0-0VNv2t2A6Qs5dKZN-PV9TsnfTJyfs-X14mJ-umS24HxgUgiwpTWzoipmpkJZi7VCXOFKFStb87qu1-jQOcVrdGC5qB2XylZVVfMsiCn5NnL7GB62mAZ9H7YxP5G0AJmhsuIyu4rRZWNIKaLTfWw6E3cauN7Xr8f6da5fv9WvH3NIjKGUzX6D8QP9n9QrrjmLug</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3147284704</pqid></control><display><type>article</type><title>Optimization of Sensor Morphology and Sensing Performance in a Non-enzymatic Graphene FET Biosensor for Detection of Biomolecules in Complex Analytes</title><source>SpringerLink Journals</source><creator>Senthil Kumaran, V. N. ; Venkatesh, M. ; Alqahtani, Abdulrahman Saad ; Mubarakali, Azath ; Parthasarathy, P.</creator><creatorcontrib>Senthil Kumaran, V. N. ; Venkatesh, M. ; Alqahtani, Abdulrahman Saad ; Mubarakali, Azath ; Parthasarathy, P.</creatorcontrib><description>Recent advances in ultrasensitive electrical biosensors using graphene nanostructures such as nanowalls and nanopores have increased the surface area-to-volume ratio. These structures provide signals at low biomolecule concentrations that are generally insufficient for vital measurements, especially in complex physiological analytes, making practical deployment difficult. A new, reproducible, and scalable chemical technique for constructing smooth graphene nanogrids enables molar biomolecule detection in field-effect transistor (FET) mode. We examine how pore morphology affects the sensing capability of label-free graphene nanoporous FET biosensors, aiming for sub-femtomolar detection limits with a good signal-to-noise ratio (SNR) in blood or urine serum. Despite problems including drain–source current sensitivity overlap due to high quantities of nonspecific antigens, our improved graphene nanogrid sensor detected hepatitis B (Hep-B) surface antigen in serum at sub-femtomolar levels. In serum containing 3 nM hepatitis C (Hep-C) as a nonspecific antigen, a pore diameter of 30 nm and length of 120 nm had the highest SNR and detected 0.25 fM Hep-B. We used a graphene nanogrid FET biosensor in heterodyne mode (80 kHz to 2 MHz) to quantify Hep-B down to 0.3 fM in blood using a probabilistic neural network (PNN) to reduce Debye screening effects. The performance of the PNN exceeded that of the polynomial fit and static neural network models by limiting quantification errors to 10%. Electrical resistance was linearly related to the Hep-C virus core antigen (HCVcAg) concentration (80–550 pg/mL) in real-time tests. After improvement of functionalization parameters, the SNR increased 70%, detecting 0.20 fM Hep-B virus molecules with 60% sensitivity and 6% standard deviation.</description><identifier>ISSN: 0361-5235</identifier><identifier>EISSN: 1543-186X</identifier><identifier>DOI: 10.1007/s11664-024-11531-w</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Antigens ; Biomolecules ; Biosensors ; Blood ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Electronics and Microelectronics ; Energy Materials ; Energy Storage ; Error reduction ; Field effect transistors ; Graphene ; Hepatitis ; Instrumentation ; Materials Science ; Morphology ; Neural networks ; Optical and Electronic Materials ; Original Research Article ; Parameter sensitivity ; Physiological effects ; Polynomials ; Real time ; Semiconductor devices ; Sensitivity ; Signal to noise ratio ; Solid State Physics</subject><ispartof>Journal of electronic materials, 2025, Vol.54 (1), p.285-299</ispartof><rights>The Minerals, Metals &amp; Materials Society 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>Copyright Springer Nature B.V. Jan 2025</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c200t-4331c6ca82728a7e493d5eebeb52bc90999defeff509ef1c039f045c77790efe3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11664-024-11531-w$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11664-024-11531-w$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Senthil Kumaran, V. N.</creatorcontrib><creatorcontrib>Venkatesh, M.</creatorcontrib><creatorcontrib>Alqahtani, Abdulrahman Saad</creatorcontrib><creatorcontrib>Mubarakali, Azath</creatorcontrib><creatorcontrib>Parthasarathy, P.</creatorcontrib><title>Optimization of Sensor Morphology and Sensing Performance in a Non-enzymatic Graphene FET Biosensor for Detection of Biomolecules in Complex Analytes</title><title>Journal of electronic materials</title><addtitle>J. Electron. Mater</addtitle><description>Recent advances in ultrasensitive electrical biosensors using graphene nanostructures such as nanowalls and nanopores have increased the surface area-to-volume ratio. These structures provide signals at low biomolecule concentrations that are generally insufficient for vital measurements, especially in complex physiological analytes, making practical deployment difficult. A new, reproducible, and scalable chemical technique for constructing smooth graphene nanogrids enables molar biomolecule detection in field-effect transistor (FET) mode. We examine how pore morphology affects the sensing capability of label-free graphene nanoporous FET biosensors, aiming for sub-femtomolar detection limits with a good signal-to-noise ratio (SNR) in blood or urine serum. Despite problems including drain–source current sensitivity overlap due to high quantities of nonspecific antigens, our improved graphene nanogrid sensor detected hepatitis B (Hep-B) surface antigen in serum at sub-femtomolar levels. In serum containing 3 nM hepatitis C (Hep-C) as a nonspecific antigen, a pore diameter of 30 nm and length of 120 nm had the highest SNR and detected 0.25 fM Hep-B. We used a graphene nanogrid FET biosensor in heterodyne mode (80 kHz to 2 MHz) to quantify Hep-B down to 0.3 fM in blood using a probabilistic neural network (PNN) to reduce Debye screening effects. The performance of the PNN exceeded that of the polynomial fit and static neural network models by limiting quantification errors to 10%. Electrical resistance was linearly related to the Hep-C virus core antigen (HCVcAg) concentration (80–550 pg/mL) in real-time tests. After improvement of functionalization parameters, the SNR increased 70%, detecting 0.20 fM Hep-B virus molecules with 60% sensitivity and 6% standard deviation.</description><subject>Antigens</subject><subject>Biomolecules</subject><subject>Biosensors</subject><subject>Blood</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Electronics and Microelectronics</subject><subject>Energy Materials</subject><subject>Energy Storage</subject><subject>Error reduction</subject><subject>Field effect transistors</subject><subject>Graphene</subject><subject>Hepatitis</subject><subject>Instrumentation</subject><subject>Materials Science</subject><subject>Morphology</subject><subject>Neural networks</subject><subject>Optical and Electronic Materials</subject><subject>Original Research Article</subject><subject>Parameter sensitivity</subject><subject>Physiological effects</subject><subject>Polynomials</subject><subject>Real time</subject><subject>Semiconductor devices</subject><subject>Sensitivity</subject><subject>Signal to noise ratio</subject><subject>Solid State Physics</subject><issn>0361-5235</issn><issn>1543-186X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><recordid>eNp9kE9PGzEQxS1UJNK0X4CTpZ5dPGt7N3ukaQlI4Y_UVuJmOc44LNq1F3sjCN-D74vDUnHraaR57_1m9Ag5Bv4dOK9OEkBZSsYLyQCUAPZ4QCagpGAwK28_kQkXJTBVCHVEPqd0zzkomMGEvFz3Q9M1z2ZogqfB0d_oU4j0MsT-LrRhs6PGr9-2jd_QG4wuxM54i7Tx1NCr4Bn6512XAZYuounv0CM9-_WH_mhCGmE5Qn_igPbfkSx1oUW7bTHtOfPQ9S0-0VNv2t2A6Qs5dKZN-PV9TsnfTJyfs-X14mJ-umS24HxgUgiwpTWzoipmpkJZi7VCXOFKFStb87qu1-jQOcVrdGC5qB2XylZVVfMsiCn5NnL7GB62mAZ9H7YxP5G0AJmhsuIyu4rRZWNIKaLTfWw6E3cauN7Xr8f6da5fv9WvH3NIjKGUzX6D8QP9n9QrrjmLug</recordid><startdate>2025</startdate><enddate>2025</enddate><creator>Senthil Kumaran, V. N.</creator><creator>Venkatesh, M.</creator><creator>Alqahtani, Abdulrahman Saad</creator><creator>Mubarakali, Azath</creator><creator>Parthasarathy, P.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2025</creationdate><title>Optimization of Sensor Morphology and Sensing Performance in a Non-enzymatic Graphene FET Biosensor for Detection of Biomolecules in Complex Analytes</title><author>Senthil Kumaran, V. N. ; Venkatesh, M. ; Alqahtani, Abdulrahman Saad ; Mubarakali, Azath ; Parthasarathy, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-4331c6ca82728a7e493d5eebeb52bc90999defeff509ef1c039f045c77790efe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Antigens</topic><topic>Biomolecules</topic><topic>Biosensors</topic><topic>Blood</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Electronics and Microelectronics</topic><topic>Energy Materials</topic><topic>Energy Storage</topic><topic>Error reduction</topic><topic>Field effect transistors</topic><topic>Graphene</topic><topic>Hepatitis</topic><topic>Instrumentation</topic><topic>Materials Science</topic><topic>Morphology</topic><topic>Neural networks</topic><topic>Optical and Electronic Materials</topic><topic>Original Research Article</topic><topic>Parameter sensitivity</topic><topic>Physiological effects</topic><topic>Polynomials</topic><topic>Real time</topic><topic>Semiconductor devices</topic><topic>Sensitivity</topic><topic>Signal to noise ratio</topic><topic>Solid State Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Senthil Kumaran, V. N.</creatorcontrib><creatorcontrib>Venkatesh, M.</creatorcontrib><creatorcontrib>Alqahtani, Abdulrahman Saad</creatorcontrib><creatorcontrib>Mubarakali, Azath</creatorcontrib><creatorcontrib>Parthasarathy, P.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of electronic materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Senthil Kumaran, V. N.</au><au>Venkatesh, M.</au><au>Alqahtani, Abdulrahman Saad</au><au>Mubarakali, Azath</au><au>Parthasarathy, P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimization of Sensor Morphology and Sensing Performance in a Non-enzymatic Graphene FET Biosensor for Detection of Biomolecules in Complex Analytes</atitle><jtitle>Journal of electronic materials</jtitle><stitle>J. Electron. Mater</stitle><date>2025</date><risdate>2025</risdate><volume>54</volume><issue>1</issue><spage>285</spage><epage>299</epage><pages>285-299</pages><issn>0361-5235</issn><eissn>1543-186X</eissn><abstract>Recent advances in ultrasensitive electrical biosensors using graphene nanostructures such as nanowalls and nanopores have increased the surface area-to-volume ratio. These structures provide signals at low biomolecule concentrations that are generally insufficient for vital measurements, especially in complex physiological analytes, making practical deployment difficult. A new, reproducible, and scalable chemical technique for constructing smooth graphene nanogrids enables molar biomolecule detection in field-effect transistor (FET) mode. We examine how pore morphology affects the sensing capability of label-free graphene nanoporous FET biosensors, aiming for sub-femtomolar detection limits with a good signal-to-noise ratio (SNR) in blood or urine serum. Despite problems including drain–source current sensitivity overlap due to high quantities of nonspecific antigens, our improved graphene nanogrid sensor detected hepatitis B (Hep-B) surface antigen in serum at sub-femtomolar levels. In serum containing 3 nM hepatitis C (Hep-C) as a nonspecific antigen, a pore diameter of 30 nm and length of 120 nm had the highest SNR and detected 0.25 fM Hep-B. We used a graphene nanogrid FET biosensor in heterodyne mode (80 kHz to 2 MHz) to quantify Hep-B down to 0.3 fM in blood using a probabilistic neural network (PNN) to reduce Debye screening effects. The performance of the PNN exceeded that of the polynomial fit and static neural network models by limiting quantification errors to 10%. Electrical resistance was linearly related to the Hep-C virus core antigen (HCVcAg) concentration (80–550 pg/mL) in real-time tests. After improvement of functionalization parameters, the SNR increased 70%, detecting 0.20 fM Hep-B virus molecules with 60% sensitivity and 6% standard deviation.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11664-024-11531-w</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0361-5235
ispartof Journal of electronic materials, 2025, Vol.54 (1), p.285-299
issn 0361-5235
1543-186X
language eng
recordid cdi_proquest_journals_3147284704
source SpringerLink Journals
subjects Antigens
Biomolecules
Biosensors
Blood
Characterization and Evaluation of Materials
Chemistry and Materials Science
Electronics and Microelectronics
Energy Materials
Energy Storage
Error reduction
Field effect transistors
Graphene
Hepatitis
Instrumentation
Materials Science
Morphology
Neural networks
Optical and Electronic Materials
Original Research Article
Parameter sensitivity
Physiological effects
Polynomials
Real time
Semiconductor devices
Sensitivity
Signal to noise ratio
Solid State Physics
title Optimization of Sensor Morphology and Sensing Performance in a Non-enzymatic Graphene FET Biosensor for Detection of Biomolecules in Complex Analytes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T01%3A57%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimization%20of%20Sensor%20Morphology%20and%20Sensing%20Performance%20in%20a%20Non-enzymatic%20Graphene%20FET%20Biosensor%20for%20Detection%20of%20Biomolecules%20in%20Complex%20Analytes&rft.jtitle=Journal%20of%20electronic%20materials&rft.au=Senthil%20Kumaran,%20V.%20N.&rft.date=2025&rft.volume=54&rft.issue=1&rft.spage=285&rft.epage=299&rft.pages=285-299&rft.issn=0361-5235&rft.eissn=1543-186X&rft_id=info:doi/10.1007/s11664-024-11531-w&rft_dat=%3Cproquest_cross%3E3147284704%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3147284704&rft_id=info:pmid/&rfr_iscdi=true