Optimization of Sensor Morphology and Sensing Performance in a Non-enzymatic Graphene FET Biosensor for Detection of Biomolecules in Complex Analytes
Recent advances in ultrasensitive electrical biosensors using graphene nanostructures such as nanowalls and nanopores have increased the surface area-to-volume ratio. These structures provide signals at low biomolecule concentrations that are generally insufficient for vital measurements, especially...
Gespeichert in:
Veröffentlicht in: | Journal of electronic materials 2025, Vol.54 (1), p.285-299 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 299 |
---|---|
container_issue | 1 |
container_start_page | 285 |
container_title | Journal of electronic materials |
container_volume | 54 |
creator | Senthil Kumaran, V. N. Venkatesh, M. Alqahtani, Abdulrahman Saad Mubarakali, Azath Parthasarathy, P. |
description | Recent advances in ultrasensitive electrical biosensors using graphene nanostructures such as nanowalls and nanopores have increased the surface area-to-volume ratio. These structures provide signals at low biomolecule concentrations that are generally insufficient for vital measurements, especially in complex physiological analytes, making practical deployment difficult. A new, reproducible, and scalable chemical technique for constructing smooth graphene nanogrids enables molar biomolecule detection in field-effect transistor (FET) mode. We examine how pore morphology affects the sensing capability of label-free graphene nanoporous FET biosensors, aiming for sub-femtomolar detection limits with a good signal-to-noise ratio (SNR) in blood or urine serum. Despite problems including drain–source current sensitivity overlap due to high quantities of nonspecific antigens, our improved graphene nanogrid sensor detected hepatitis B (Hep-B) surface antigen in serum at sub-femtomolar levels. In serum containing 3 nM hepatitis C (Hep-C) as a nonspecific antigen, a pore diameter of 30 nm and length of 120 nm had the highest SNR and detected 0.25 fM Hep-B. We used a graphene nanogrid FET biosensor in heterodyne mode (80 kHz to 2 MHz) to quantify Hep-B down to 0.3 fM in blood using a probabilistic neural network (PNN) to reduce Debye screening effects. The performance of the PNN exceeded that of the polynomial fit and static neural network models by limiting quantification errors to 10%. Electrical resistance was linearly related to the Hep-C virus core antigen (HCVcAg) concentration (80–550 pg/mL) in real-time tests. After improvement of functionalization parameters, the SNR increased 70%, detecting 0.20 fM Hep-B virus molecules with 60% sensitivity and 6% standard deviation. |
doi_str_mv | 10.1007/s11664-024-11531-w |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3147284704</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3147284704</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-4331c6ca82728a7e493d5eebeb52bc90999defeff509ef1c039f045c77790efe3</originalsourceid><addsrcrecordid>eNp9kE9PGzEQxS1UJNK0X4CTpZ5dPGt7N3ukaQlI4Y_UVuJmOc44LNq1F3sjCN-D74vDUnHraaR57_1m9Ag5Bv4dOK9OEkBZSsYLyQCUAPZ4QCagpGAwK28_kQkXJTBVCHVEPqd0zzkomMGEvFz3Q9M1z2ZogqfB0d_oU4j0MsT-LrRhs6PGr9-2jd_QG4wuxM54i7Tx1NCr4Bn6512XAZYuounv0CM9-_WH_mhCGmE5Qn_igPbfkSx1oUW7bTHtOfPQ9S0-0VNv2t2A6Qs5dKZN-PV9TsnfTJyfs-X14mJ-umS24HxgUgiwpTWzoipmpkJZi7VCXOFKFStb87qu1-jQOcVrdGC5qB2XylZVVfMsiCn5NnL7GB62mAZ9H7YxP5G0AJmhsuIyu4rRZWNIKaLTfWw6E3cauN7Xr8f6da5fv9WvH3NIjKGUzX6D8QP9n9QrrjmLug</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3147284704</pqid></control><display><type>article</type><title>Optimization of Sensor Morphology and Sensing Performance in a Non-enzymatic Graphene FET Biosensor for Detection of Biomolecules in Complex Analytes</title><source>SpringerLink Journals</source><creator>Senthil Kumaran, V. N. ; Venkatesh, M. ; Alqahtani, Abdulrahman Saad ; Mubarakali, Azath ; Parthasarathy, P.</creator><creatorcontrib>Senthil Kumaran, V. N. ; Venkatesh, M. ; Alqahtani, Abdulrahman Saad ; Mubarakali, Azath ; Parthasarathy, P.</creatorcontrib><description>Recent advances in ultrasensitive electrical biosensors using graphene nanostructures such as nanowalls and nanopores have increased the surface area-to-volume ratio. These structures provide signals at low biomolecule concentrations that are generally insufficient for vital measurements, especially in complex physiological analytes, making practical deployment difficult. A new, reproducible, and scalable chemical technique for constructing smooth graphene nanogrids enables molar biomolecule detection in field-effect transistor (FET) mode. We examine how pore morphology affects the sensing capability of label-free graphene nanoporous FET biosensors, aiming for sub-femtomolar detection limits with a good signal-to-noise ratio (SNR) in blood or urine serum. Despite problems including drain–source current sensitivity overlap due to high quantities of nonspecific antigens, our improved graphene nanogrid sensor detected hepatitis B (Hep-B) surface antigen in serum at sub-femtomolar levels. In serum containing 3 nM hepatitis C (Hep-C) as a nonspecific antigen, a pore diameter of 30 nm and length of 120 nm had the highest SNR and detected 0.25 fM Hep-B. We used a graphene nanogrid FET biosensor in heterodyne mode (80 kHz to 2 MHz) to quantify Hep-B down to 0.3 fM in blood using a probabilistic neural network (PNN) to reduce Debye screening effects. The performance of the PNN exceeded that of the polynomial fit and static neural network models by limiting quantification errors to 10%. Electrical resistance was linearly related to the Hep-C virus core antigen (HCVcAg) concentration (80–550 pg/mL) in real-time tests. After improvement of functionalization parameters, the SNR increased 70%, detecting 0.20 fM Hep-B virus molecules with 60% sensitivity and 6% standard deviation.</description><identifier>ISSN: 0361-5235</identifier><identifier>EISSN: 1543-186X</identifier><identifier>DOI: 10.1007/s11664-024-11531-w</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Antigens ; Biomolecules ; Biosensors ; Blood ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Electronics and Microelectronics ; Energy Materials ; Energy Storage ; Error reduction ; Field effect transistors ; Graphene ; Hepatitis ; Instrumentation ; Materials Science ; Morphology ; Neural networks ; Optical and Electronic Materials ; Original Research Article ; Parameter sensitivity ; Physiological effects ; Polynomials ; Real time ; Semiconductor devices ; Sensitivity ; Signal to noise ratio ; Solid State Physics</subject><ispartof>Journal of electronic materials, 2025, Vol.54 (1), p.285-299</ispartof><rights>The Minerals, Metals & Materials Society 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>Copyright Springer Nature B.V. Jan 2025</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c200t-4331c6ca82728a7e493d5eebeb52bc90999defeff509ef1c039f045c77790efe3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11664-024-11531-w$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11664-024-11531-w$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Senthil Kumaran, V. N.</creatorcontrib><creatorcontrib>Venkatesh, M.</creatorcontrib><creatorcontrib>Alqahtani, Abdulrahman Saad</creatorcontrib><creatorcontrib>Mubarakali, Azath</creatorcontrib><creatorcontrib>Parthasarathy, P.</creatorcontrib><title>Optimization of Sensor Morphology and Sensing Performance in a Non-enzymatic Graphene FET Biosensor for Detection of Biomolecules in Complex Analytes</title><title>Journal of electronic materials</title><addtitle>J. Electron. Mater</addtitle><description>Recent advances in ultrasensitive electrical biosensors using graphene nanostructures such as nanowalls and nanopores have increased the surface area-to-volume ratio. These structures provide signals at low biomolecule concentrations that are generally insufficient for vital measurements, especially in complex physiological analytes, making practical deployment difficult. A new, reproducible, and scalable chemical technique for constructing smooth graphene nanogrids enables molar biomolecule detection in field-effect transistor (FET) mode. We examine how pore morphology affects the sensing capability of label-free graphene nanoporous FET biosensors, aiming for sub-femtomolar detection limits with a good signal-to-noise ratio (SNR) in blood or urine serum. Despite problems including drain–source current sensitivity overlap due to high quantities of nonspecific antigens, our improved graphene nanogrid sensor detected hepatitis B (Hep-B) surface antigen in serum at sub-femtomolar levels. In serum containing 3 nM hepatitis C (Hep-C) as a nonspecific antigen, a pore diameter of 30 nm and length of 120 nm had the highest SNR and detected 0.25 fM Hep-B. We used a graphene nanogrid FET biosensor in heterodyne mode (80 kHz to 2 MHz) to quantify Hep-B down to 0.3 fM in blood using a probabilistic neural network (PNN) to reduce Debye screening effects. The performance of the PNN exceeded that of the polynomial fit and static neural network models by limiting quantification errors to 10%. Electrical resistance was linearly related to the Hep-C virus core antigen (HCVcAg) concentration (80–550 pg/mL) in real-time tests. After improvement of functionalization parameters, the SNR increased 70%, detecting 0.20 fM Hep-B virus molecules with 60% sensitivity and 6% standard deviation.</description><subject>Antigens</subject><subject>Biomolecules</subject><subject>Biosensors</subject><subject>Blood</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Electronics and Microelectronics</subject><subject>Energy Materials</subject><subject>Energy Storage</subject><subject>Error reduction</subject><subject>Field effect transistors</subject><subject>Graphene</subject><subject>Hepatitis</subject><subject>Instrumentation</subject><subject>Materials Science</subject><subject>Morphology</subject><subject>Neural networks</subject><subject>Optical and Electronic Materials</subject><subject>Original Research Article</subject><subject>Parameter sensitivity</subject><subject>Physiological effects</subject><subject>Polynomials</subject><subject>Real time</subject><subject>Semiconductor devices</subject><subject>Sensitivity</subject><subject>Signal to noise ratio</subject><subject>Solid State Physics</subject><issn>0361-5235</issn><issn>1543-186X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><recordid>eNp9kE9PGzEQxS1UJNK0X4CTpZ5dPGt7N3ukaQlI4Y_UVuJmOc44LNq1F3sjCN-D74vDUnHraaR57_1m9Ag5Bv4dOK9OEkBZSsYLyQCUAPZ4QCagpGAwK28_kQkXJTBVCHVEPqd0zzkomMGEvFz3Q9M1z2ZogqfB0d_oU4j0MsT-LrRhs6PGr9-2jd_QG4wuxM54i7Tx1NCr4Bn6512XAZYuounv0CM9-_WH_mhCGmE5Qn_igPbfkSx1oUW7bTHtOfPQ9S0-0VNv2t2A6Qs5dKZN-PV9TsnfTJyfs-X14mJ-umS24HxgUgiwpTWzoipmpkJZi7VCXOFKFStb87qu1-jQOcVrdGC5qB2XylZVVfMsiCn5NnL7GB62mAZ9H7YxP5G0AJmhsuIyu4rRZWNIKaLTfWw6E3cauN7Xr8f6da5fv9WvH3NIjKGUzX6D8QP9n9QrrjmLug</recordid><startdate>2025</startdate><enddate>2025</enddate><creator>Senthil Kumaran, V. N.</creator><creator>Venkatesh, M.</creator><creator>Alqahtani, Abdulrahman Saad</creator><creator>Mubarakali, Azath</creator><creator>Parthasarathy, P.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2025</creationdate><title>Optimization of Sensor Morphology and Sensing Performance in a Non-enzymatic Graphene FET Biosensor for Detection of Biomolecules in Complex Analytes</title><author>Senthil Kumaran, V. N. ; Venkatesh, M. ; Alqahtani, Abdulrahman Saad ; Mubarakali, Azath ; Parthasarathy, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-4331c6ca82728a7e493d5eebeb52bc90999defeff509ef1c039f045c77790efe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Antigens</topic><topic>Biomolecules</topic><topic>Biosensors</topic><topic>Blood</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Electronics and Microelectronics</topic><topic>Energy Materials</topic><topic>Energy Storage</topic><topic>Error reduction</topic><topic>Field effect transistors</topic><topic>Graphene</topic><topic>Hepatitis</topic><topic>Instrumentation</topic><topic>Materials Science</topic><topic>Morphology</topic><topic>Neural networks</topic><topic>Optical and Electronic Materials</topic><topic>Original Research Article</topic><topic>Parameter sensitivity</topic><topic>Physiological effects</topic><topic>Polynomials</topic><topic>Real time</topic><topic>Semiconductor devices</topic><topic>Sensitivity</topic><topic>Signal to noise ratio</topic><topic>Solid State Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Senthil Kumaran, V. N.</creatorcontrib><creatorcontrib>Venkatesh, M.</creatorcontrib><creatorcontrib>Alqahtani, Abdulrahman Saad</creatorcontrib><creatorcontrib>Mubarakali, Azath</creatorcontrib><creatorcontrib>Parthasarathy, P.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of electronic materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Senthil Kumaran, V. N.</au><au>Venkatesh, M.</au><au>Alqahtani, Abdulrahman Saad</au><au>Mubarakali, Azath</au><au>Parthasarathy, P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimization of Sensor Morphology and Sensing Performance in a Non-enzymatic Graphene FET Biosensor for Detection of Biomolecules in Complex Analytes</atitle><jtitle>Journal of electronic materials</jtitle><stitle>J. Electron. Mater</stitle><date>2025</date><risdate>2025</risdate><volume>54</volume><issue>1</issue><spage>285</spage><epage>299</epage><pages>285-299</pages><issn>0361-5235</issn><eissn>1543-186X</eissn><abstract>Recent advances in ultrasensitive electrical biosensors using graphene nanostructures such as nanowalls and nanopores have increased the surface area-to-volume ratio. These structures provide signals at low biomolecule concentrations that are generally insufficient for vital measurements, especially in complex physiological analytes, making practical deployment difficult. A new, reproducible, and scalable chemical technique for constructing smooth graphene nanogrids enables molar biomolecule detection in field-effect transistor (FET) mode. We examine how pore morphology affects the sensing capability of label-free graphene nanoporous FET biosensors, aiming for sub-femtomolar detection limits with a good signal-to-noise ratio (SNR) in blood or urine serum. Despite problems including drain–source current sensitivity overlap due to high quantities of nonspecific antigens, our improved graphene nanogrid sensor detected hepatitis B (Hep-B) surface antigen in serum at sub-femtomolar levels. In serum containing 3 nM hepatitis C (Hep-C) as a nonspecific antigen, a pore diameter of 30 nm and length of 120 nm had the highest SNR and detected 0.25 fM Hep-B. We used a graphene nanogrid FET biosensor in heterodyne mode (80 kHz to 2 MHz) to quantify Hep-B down to 0.3 fM in blood using a probabilistic neural network (PNN) to reduce Debye screening effects. The performance of the PNN exceeded that of the polynomial fit and static neural network models by limiting quantification errors to 10%. Electrical resistance was linearly related to the Hep-C virus core antigen (HCVcAg) concentration (80–550 pg/mL) in real-time tests. After improvement of functionalization parameters, the SNR increased 70%, detecting 0.20 fM Hep-B virus molecules with 60% sensitivity and 6% standard deviation.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11664-024-11531-w</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0361-5235 |
ispartof | Journal of electronic materials, 2025, Vol.54 (1), p.285-299 |
issn | 0361-5235 1543-186X |
language | eng |
recordid | cdi_proquest_journals_3147284704 |
source | SpringerLink Journals |
subjects | Antigens Biomolecules Biosensors Blood Characterization and Evaluation of Materials Chemistry and Materials Science Electronics and Microelectronics Energy Materials Energy Storage Error reduction Field effect transistors Graphene Hepatitis Instrumentation Materials Science Morphology Neural networks Optical and Electronic Materials Original Research Article Parameter sensitivity Physiological effects Polynomials Real time Semiconductor devices Sensitivity Signal to noise ratio Solid State Physics |
title | Optimization of Sensor Morphology and Sensing Performance in a Non-enzymatic Graphene FET Biosensor for Detection of Biomolecules in Complex Analytes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T01%3A57%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimization%20of%20Sensor%20Morphology%20and%20Sensing%20Performance%20in%20a%20Non-enzymatic%20Graphene%20FET%20Biosensor%20for%20Detection%20of%20Biomolecules%20in%20Complex%20Analytes&rft.jtitle=Journal%20of%20electronic%20materials&rft.au=Senthil%20Kumaran,%20V.%20N.&rft.date=2025&rft.volume=54&rft.issue=1&rft.spage=285&rft.epage=299&rft.pages=285-299&rft.issn=0361-5235&rft.eissn=1543-186X&rft_id=info:doi/10.1007/s11664-024-11531-w&rft_dat=%3Cproquest_cross%3E3147284704%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3147284704&rft_id=info:pmid/&rfr_iscdi=true |