Understanding and Mastering Multiphysical Fields Toward Dendrite‐Free Aqueous Zinc Batteries
Aqueous zinc batteries (AZBs) have emerged as promising candidates for next‐generation grid‐scale energy storage due to their excellent safety, environmental friendliness, and abundance of Zn metal. However, undesired dendrite growth on Zn anodes, resulting from uneven Zn plating/stripping, leads to...
Gespeichert in:
Veröffentlicht in: | Advanced energy materials 2024-12, Vol.14 (47), p.n/a |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 47 |
container_start_page | |
container_title | Advanced energy materials |
container_volume | 14 |
creator | Du, Dayue Zeng, Li Lan, Nan Luo, Dan Li, Xiaolong He, Hanna Zhang, Chuhong |
description | Aqueous zinc batteries (AZBs) have emerged as promising candidates for next‐generation grid‐scale energy storage due to their excellent safety, environmental friendliness, and abundance of Zn metal. However, undesired dendrite growth on Zn anodes, resulting from uneven Zn plating/stripping, leads to poor durability and low Coulombic efficiency, posing significant challenges for the practical application of AZBs. Multiple physical fields, the intrinsic driving force governing the distribution of electrons and ions, significantly impact Zn deposition behavior. The underlying mechanisms and regulation strategies related to this phenomenon has not been fully reviewed. This comprehensive review focuses on revealing the key physical fields influencing Zn deposition (including ionic flux, electric field, stress field, and temperature field) and summarizes the most effective control methods. Each approach is thoroughly scrutinized, highlighting its operational mechanisms, benefits, and limitations. Furthermore, the challenges and potential pathways for developing durable Zn anodes are outlined. Through in‐depth analysis of the influences of multiphysical fields on Zn deposition behavior, this review sets the foundation for enhancing the performance of Zn anodes, thereby supporting the advancement of Zn batteries commercialization.
This review focuses on revealing the key physical fields influencing Zn deposition (including ionic flux, electric field, stress field, and temperature field) and summarizes the most effective control methods for dendrite‐free aqueous Zn‐metal batteries. Challenges and potential pathways for durable Zn anodes are outlined to support future Zn batteries commercialization. |
doi_str_mv | 10.1002/aenm.202403153 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3147281353</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3147281353</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2423-12e5076fc44804184c5833e8e120d918597385384d2d4bdd6726755686c6511a3</originalsourceid><addsrcrecordid>eNqFULtOwzAUtRBIVKUrsyXmFL_jjKW0gNTC0i4MWCa-BVdpUuxEVTc-gW_kS0hUVEbucu6VzuPqIHRJyZASwq4tlJshI0wQTiU_QT2qqEiUFuT0uHN2jgYxrkk7IqOE8x56WZYOQqxt6Xz5hlvAcxtrCN01b4rab9_30ee2wFMPhYt4Ue1scPgWShd8Dd-fX9MAgEcfDVRNxM--zPGNrTsLiBfobGWLCINf7KPldLIY3yezp7uH8WiW5EwwnlAGkqRqlQuhiaBa5FJzDhooIy6jWmYp15Jr4ZgTr86plKlUSqVVriSllvfR1cF3G6r2kVibddWEso00nIqUacolb1nDAysPVYwBVmYb_MaGvaHEdDWarkZzrLEVZAfBzhew_4dtRpPH-Z_2B-aJdd4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3147281353</pqid></control><display><type>article</type><title>Understanding and Mastering Multiphysical Fields Toward Dendrite‐Free Aqueous Zinc Batteries</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Du, Dayue ; Zeng, Li ; Lan, Nan ; Luo, Dan ; Li, Xiaolong ; He, Hanna ; Zhang, Chuhong</creator><creatorcontrib>Du, Dayue ; Zeng, Li ; Lan, Nan ; Luo, Dan ; Li, Xiaolong ; He, Hanna ; Zhang, Chuhong</creatorcontrib><description>Aqueous zinc batteries (AZBs) have emerged as promising candidates for next‐generation grid‐scale energy storage due to their excellent safety, environmental friendliness, and abundance of Zn metal. However, undesired dendrite growth on Zn anodes, resulting from uneven Zn plating/stripping, leads to poor durability and low Coulombic efficiency, posing significant challenges for the practical application of AZBs. Multiple physical fields, the intrinsic driving force governing the distribution of electrons and ions, significantly impact Zn deposition behavior. The underlying mechanisms and regulation strategies related to this phenomenon has not been fully reviewed. This comprehensive review focuses on revealing the key physical fields influencing Zn deposition (including ionic flux, electric field, stress field, and temperature field) and summarizes the most effective control methods. Each approach is thoroughly scrutinized, highlighting its operational mechanisms, benefits, and limitations. Furthermore, the challenges and potential pathways for developing durable Zn anodes are outlined. Through in‐depth analysis of the influences of multiphysical fields on Zn deposition behavior, this review sets the foundation for enhancing the performance of Zn anodes, thereby supporting the advancement of Zn batteries commercialization.
This review focuses on revealing the key physical fields influencing Zn deposition (including ionic flux, electric field, stress field, and temperature field) and summarizes the most effective control methods for dendrite‐free aqueous Zn‐metal batteries. Challenges and potential pathways for durable Zn anodes are outlined to support future Zn batteries commercialization.</description><identifier>ISSN: 1614-6832</identifier><identifier>EISSN: 1614-6840</identifier><identifier>DOI: 10.1002/aenm.202403153</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Anodes ; aqueous Zn batteries ; Commercialization ; Control methods ; dendrite growth ; Deposition ; Durability ; Electric fields ; Force distribution ; modulation strategies ; multiphysical fields ; Stress distribution ; Temperature distribution ; Zinc ; Zn anodes</subject><ispartof>Advanced energy materials, 2024-12, Vol.14 (47), p.n/a</ispartof><rights>2024 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2423-12e5076fc44804184c5833e8e120d918597385384d2d4bdd6726755686c6511a3</cites><orcidid>0000-0002-3378-7570</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Faenm.202403153$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Faenm.202403153$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Du, Dayue</creatorcontrib><creatorcontrib>Zeng, Li</creatorcontrib><creatorcontrib>Lan, Nan</creatorcontrib><creatorcontrib>Luo, Dan</creatorcontrib><creatorcontrib>Li, Xiaolong</creatorcontrib><creatorcontrib>He, Hanna</creatorcontrib><creatorcontrib>Zhang, Chuhong</creatorcontrib><title>Understanding and Mastering Multiphysical Fields Toward Dendrite‐Free Aqueous Zinc Batteries</title><title>Advanced energy materials</title><description>Aqueous zinc batteries (AZBs) have emerged as promising candidates for next‐generation grid‐scale energy storage due to their excellent safety, environmental friendliness, and abundance of Zn metal. However, undesired dendrite growth on Zn anodes, resulting from uneven Zn plating/stripping, leads to poor durability and low Coulombic efficiency, posing significant challenges for the practical application of AZBs. Multiple physical fields, the intrinsic driving force governing the distribution of electrons and ions, significantly impact Zn deposition behavior. The underlying mechanisms and regulation strategies related to this phenomenon has not been fully reviewed. This comprehensive review focuses on revealing the key physical fields influencing Zn deposition (including ionic flux, electric field, stress field, and temperature field) and summarizes the most effective control methods. Each approach is thoroughly scrutinized, highlighting its operational mechanisms, benefits, and limitations. Furthermore, the challenges and potential pathways for developing durable Zn anodes are outlined. Through in‐depth analysis of the influences of multiphysical fields on Zn deposition behavior, this review sets the foundation for enhancing the performance of Zn anodes, thereby supporting the advancement of Zn batteries commercialization.
This review focuses on revealing the key physical fields influencing Zn deposition (including ionic flux, electric field, stress field, and temperature field) and summarizes the most effective control methods for dendrite‐free aqueous Zn‐metal batteries. Challenges and potential pathways for durable Zn anodes are outlined to support future Zn batteries commercialization.</description><subject>Anodes</subject><subject>aqueous Zn batteries</subject><subject>Commercialization</subject><subject>Control methods</subject><subject>dendrite growth</subject><subject>Deposition</subject><subject>Durability</subject><subject>Electric fields</subject><subject>Force distribution</subject><subject>modulation strategies</subject><subject>multiphysical fields</subject><subject>Stress distribution</subject><subject>Temperature distribution</subject><subject>Zinc</subject><subject>Zn anodes</subject><issn>1614-6832</issn><issn>1614-6840</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFULtOwzAUtRBIVKUrsyXmFL_jjKW0gNTC0i4MWCa-BVdpUuxEVTc-gW_kS0hUVEbucu6VzuPqIHRJyZASwq4tlJshI0wQTiU_QT2qqEiUFuT0uHN2jgYxrkk7IqOE8x56WZYOQqxt6Xz5hlvAcxtrCN01b4rab9_30ee2wFMPhYt4Ue1scPgWShd8Dd-fX9MAgEcfDVRNxM--zPGNrTsLiBfobGWLCINf7KPldLIY3yezp7uH8WiW5EwwnlAGkqRqlQuhiaBa5FJzDhooIy6jWmYp15Jr4ZgTr86plKlUSqVVriSllvfR1cF3G6r2kVibddWEso00nIqUacolb1nDAysPVYwBVmYb_MaGvaHEdDWarkZzrLEVZAfBzhew_4dtRpPH-Z_2B-aJdd4</recordid><startdate>20241201</startdate><enddate>20241201</enddate><creator>Du, Dayue</creator><creator>Zeng, Li</creator><creator>Lan, Nan</creator><creator>Luo, Dan</creator><creator>Li, Xiaolong</creator><creator>He, Hanna</creator><creator>Zhang, Chuhong</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-3378-7570</orcidid></search><sort><creationdate>20241201</creationdate><title>Understanding and Mastering Multiphysical Fields Toward Dendrite‐Free Aqueous Zinc Batteries</title><author>Du, Dayue ; Zeng, Li ; Lan, Nan ; Luo, Dan ; Li, Xiaolong ; He, Hanna ; Zhang, Chuhong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2423-12e5076fc44804184c5833e8e120d918597385384d2d4bdd6726755686c6511a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Anodes</topic><topic>aqueous Zn batteries</topic><topic>Commercialization</topic><topic>Control methods</topic><topic>dendrite growth</topic><topic>Deposition</topic><topic>Durability</topic><topic>Electric fields</topic><topic>Force distribution</topic><topic>modulation strategies</topic><topic>multiphysical fields</topic><topic>Stress distribution</topic><topic>Temperature distribution</topic><topic>Zinc</topic><topic>Zn anodes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Du, Dayue</creatorcontrib><creatorcontrib>Zeng, Li</creatorcontrib><creatorcontrib>Lan, Nan</creatorcontrib><creatorcontrib>Luo, Dan</creatorcontrib><creatorcontrib>Li, Xiaolong</creatorcontrib><creatorcontrib>He, Hanna</creatorcontrib><creatorcontrib>Zhang, Chuhong</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced energy materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Du, Dayue</au><au>Zeng, Li</au><au>Lan, Nan</au><au>Luo, Dan</au><au>Li, Xiaolong</au><au>He, Hanna</au><au>Zhang, Chuhong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Understanding and Mastering Multiphysical Fields Toward Dendrite‐Free Aqueous Zinc Batteries</atitle><jtitle>Advanced energy materials</jtitle><date>2024-12-01</date><risdate>2024</risdate><volume>14</volume><issue>47</issue><epage>n/a</epage><issn>1614-6832</issn><eissn>1614-6840</eissn><abstract>Aqueous zinc batteries (AZBs) have emerged as promising candidates for next‐generation grid‐scale energy storage due to their excellent safety, environmental friendliness, and abundance of Zn metal. However, undesired dendrite growth on Zn anodes, resulting from uneven Zn plating/stripping, leads to poor durability and low Coulombic efficiency, posing significant challenges for the practical application of AZBs. Multiple physical fields, the intrinsic driving force governing the distribution of electrons and ions, significantly impact Zn deposition behavior. The underlying mechanisms and regulation strategies related to this phenomenon has not been fully reviewed. This comprehensive review focuses on revealing the key physical fields influencing Zn deposition (including ionic flux, electric field, stress field, and temperature field) and summarizes the most effective control methods. Each approach is thoroughly scrutinized, highlighting its operational mechanisms, benefits, and limitations. Furthermore, the challenges and potential pathways for developing durable Zn anodes are outlined. Through in‐depth analysis of the influences of multiphysical fields on Zn deposition behavior, this review sets the foundation for enhancing the performance of Zn anodes, thereby supporting the advancement of Zn batteries commercialization.
This review focuses on revealing the key physical fields influencing Zn deposition (including ionic flux, electric field, stress field, and temperature field) and summarizes the most effective control methods for dendrite‐free aqueous Zn‐metal batteries. Challenges and potential pathways for durable Zn anodes are outlined to support future Zn batteries commercialization.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/aenm.202403153</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0002-3378-7570</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1614-6832 |
ispartof | Advanced energy materials, 2024-12, Vol.14 (47), p.n/a |
issn | 1614-6832 1614-6840 |
language | eng |
recordid | cdi_proquest_journals_3147281353 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Anodes aqueous Zn batteries Commercialization Control methods dendrite growth Deposition Durability Electric fields Force distribution modulation strategies multiphysical fields Stress distribution Temperature distribution Zinc Zn anodes |
title | Understanding and Mastering Multiphysical Fields Toward Dendrite‐Free Aqueous Zinc Batteries |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T03%3A05%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Understanding%20and%20Mastering%20Multiphysical%20Fields%20Toward%20Dendrite%E2%80%90Free%20Aqueous%20Zinc%20Batteries&rft.jtitle=Advanced%20energy%20materials&rft.au=Du,%20Dayue&rft.date=2024-12-01&rft.volume=14&rft.issue=47&rft.epage=n/a&rft.issn=1614-6832&rft.eissn=1614-6840&rft_id=info:doi/10.1002/aenm.202403153&rft_dat=%3Cproquest_cross%3E3147281353%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3147281353&rft_id=info:pmid/&rfr_iscdi=true |