Solid–Liquid Diffusion Stresses Leading to Voiding
This paper discusses cavitation within a two-phase solid–liquid enclosed system due to interdiffusion. This mechanism is discussed within the context of solid–liquid interdiffusion bonding for metal systems and the voids which are caused by this mechanism. A case study composed of liquid (Sn), Ni 3...
Gespeichert in:
Veröffentlicht in: | Metallurgical and materials transactions. A, Physical metallurgy and materials science Physical metallurgy and materials science, 2025, Vol.56 (1), p.219-227 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 227 |
---|---|
container_issue | 1 |
container_start_page | 219 |
container_title | Metallurgical and materials transactions. A, Physical metallurgy and materials science |
container_volume | 56 |
creator | Kuziora, Stephane Leonard Aasmundtveit, Knut Eilif |
description | This paper discusses cavitation within a two-phase solid–liquid enclosed system due to interdiffusion. This mechanism is discussed within the context of solid–liquid interdiffusion bonding for metal systems and the voids which are caused by this mechanism. A case study composed of liquid (Sn), Ni
3
Sn
4
, and (Ni) phases was used. The mechanical tension and bubble volume resulting from the mechanically enclosed system during isothermal solidification at 250 °C were calculated using a fitted 1D growth model coupled with thermodynamics. Thermodynamic energy calculations showed that it becomes favorable for cavitation after 6 seconds for a starting liquid pocket of 5
µ
m
3
. The critical pressure for this cavitation was − 0.029 GPa. The volumetric change for the reaction was determined to be − 12.3 vol pct by a partial molar volume balance. While the volumetric change determined by the thermodynamics found − 7.2 vol pct. The likely presence of unwettable inclusions in non-pure liquids would circumvent this cavitation mechanism, even though cavitation conditions are present. Meaning cavitation for these systems can only be expected when the liquid metal purity is sufficient. Lastly, the bubble growth is attributed to a combination of thermodynamic bubble growth and Kirkendall vacancies. |
doi_str_mv | 10.1007/s11661-024-07618-y |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3147279180</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3147279180</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-c5069a2fa00c316e22bf46ccee533f2f6f2f531b50b4ae96230d8255a72471763</originalsourceid><addsrcrecordid>eNp9kD1OAzEQhS0EEiFwAaqVqA0z_s2WKPxKK1EEaC1n144chd3E3i3ScQduyEkwLBIdxWhe8d6b0UfIOcIlAuirhKgUUmCCglY4o_sDMkEpOMVSwGHWoDmVivFjcpLSGgCw5GpCxKLbhObz_aMKuyE0xU3wfkiha4tFH11KLhWVs01oV0XfFa9d-Jan5MjbTXJnv3tKXu5un-cPtHq6f5xfV7RmAD2tJajSMm8Bao7KMbb0QtW1c5Jzz7zKIzkuJSyFdWV-DpoZk9JqJjRqxafkYuzdxm43uNSbdTfENp80HIVmusQZZBcbXXXsUorOm20MbzbuDYL5pmNGOibTMT90zD6H-BhK2dyuXPyr_if1BdAgZ4I</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3147279180</pqid></control><display><type>article</type><title>Solid–Liquid Diffusion Stresses Leading to Voiding</title><source>SpringerLink Journals - AutoHoldings</source><creator>Kuziora, Stephane Leonard ; Aasmundtveit, Knut Eilif</creator><creatorcontrib>Kuziora, Stephane Leonard ; Aasmundtveit, Knut Eilif</creatorcontrib><description>This paper discusses cavitation within a two-phase solid–liquid enclosed system due to interdiffusion. This mechanism is discussed within the context of solid–liquid interdiffusion bonding for metal systems and the voids which are caused by this mechanism. A case study composed of liquid (Sn), Ni
3
Sn
4
, and (Ni) phases was used. The mechanical tension and bubble volume resulting from the mechanically enclosed system during isothermal solidification at 250 °C were calculated using a fitted 1D growth model coupled with thermodynamics. Thermodynamic energy calculations showed that it becomes favorable for cavitation after 6 seconds for a starting liquid pocket of 5
µ
m
3
. The critical pressure for this cavitation was − 0.029 GPa. The volumetric change for the reaction was determined to be − 12.3 vol pct by a partial molar volume balance. While the volumetric change determined by the thermodynamics found − 7.2 vol pct. The likely presence of unwettable inclusions in non-pure liquids would circumvent this cavitation mechanism, even though cavitation conditions are present. Meaning cavitation for these systems can only be expected when the liquid metal purity is sufficient. Lastly, the bubble growth is attributed to a combination of thermodynamic bubble growth and Kirkendall vacancies.</description><identifier>ISSN: 1073-5623</identifier><identifier>EISSN: 1543-1940</identifier><identifier>DOI: 10.1007/s11661-024-07618-y</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Cavitation ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Critical pressure ; Growth models ; Inclusions ; Interdiffusion ; Liquid metals ; Materials Science ; Metallic Materials ; Molar volume ; Nanotechnology ; Original Research Article ; Solidification ; Solids ; Structural Materials ; Surfaces and Interfaces ; Thermodynamics ; Thin Films</subject><ispartof>Metallurgical and materials transactions. A, Physical metallurgy and materials science, 2025, Vol.56 (1), p.219-227</ispartof><rights>The Author(s) 2024</rights><rights>Copyright Springer Nature B.V. Jan 2025</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c200t-c5069a2fa00c316e22bf46ccee533f2f6f2f531b50b4ae96230d8255a72471763</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11661-024-07618-y$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11661-024-07618-y$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Kuziora, Stephane Leonard</creatorcontrib><creatorcontrib>Aasmundtveit, Knut Eilif</creatorcontrib><title>Solid–Liquid Diffusion Stresses Leading to Voiding</title><title>Metallurgical and materials transactions. A, Physical metallurgy and materials science</title><addtitle>Metall Mater Trans A</addtitle><description>This paper discusses cavitation within a two-phase solid–liquid enclosed system due to interdiffusion. This mechanism is discussed within the context of solid–liquid interdiffusion bonding for metal systems and the voids which are caused by this mechanism. A case study composed of liquid (Sn), Ni
3
Sn
4
, and (Ni) phases was used. The mechanical tension and bubble volume resulting from the mechanically enclosed system during isothermal solidification at 250 °C were calculated using a fitted 1D growth model coupled with thermodynamics. Thermodynamic energy calculations showed that it becomes favorable for cavitation after 6 seconds for a starting liquid pocket of 5
µ
m
3
. The critical pressure for this cavitation was − 0.029 GPa. The volumetric change for the reaction was determined to be − 12.3 vol pct by a partial molar volume balance. While the volumetric change determined by the thermodynamics found − 7.2 vol pct. The likely presence of unwettable inclusions in non-pure liquids would circumvent this cavitation mechanism, even though cavitation conditions are present. Meaning cavitation for these systems can only be expected when the liquid metal purity is sufficient. Lastly, the bubble growth is attributed to a combination of thermodynamic bubble growth and Kirkendall vacancies.</description><subject>Cavitation</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Critical pressure</subject><subject>Growth models</subject><subject>Inclusions</subject><subject>Interdiffusion</subject><subject>Liquid metals</subject><subject>Materials Science</subject><subject>Metallic Materials</subject><subject>Molar volume</subject><subject>Nanotechnology</subject><subject>Original Research Article</subject><subject>Solidification</subject><subject>Solids</subject><subject>Structural Materials</subject><subject>Surfaces and Interfaces</subject><subject>Thermodynamics</subject><subject>Thin Films</subject><issn>1073-5623</issn><issn>1543-1940</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kD1OAzEQhS0EEiFwAaqVqA0z_s2WKPxKK1EEaC1n144chd3E3i3ScQduyEkwLBIdxWhe8d6b0UfIOcIlAuirhKgUUmCCglY4o_sDMkEpOMVSwGHWoDmVivFjcpLSGgCw5GpCxKLbhObz_aMKuyE0xU3wfkiha4tFH11KLhWVs01oV0XfFa9d-Jan5MjbTXJnv3tKXu5un-cPtHq6f5xfV7RmAD2tJajSMm8Bao7KMbb0QtW1c5Jzz7zKIzkuJSyFdWV-DpoZk9JqJjRqxafkYuzdxm43uNSbdTfENp80HIVmusQZZBcbXXXsUorOm20MbzbuDYL5pmNGOibTMT90zD6H-BhK2dyuXPyr_if1BdAgZ4I</recordid><startdate>2025</startdate><enddate>2025</enddate><creator>Kuziora, Stephane Leonard</creator><creator>Aasmundtveit, Knut Eilif</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>4T-</scope><scope>4U-</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>2025</creationdate><title>Solid–Liquid Diffusion Stresses Leading to Voiding</title><author>Kuziora, Stephane Leonard ; Aasmundtveit, Knut Eilif</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-c5069a2fa00c316e22bf46ccee533f2f6f2f531b50b4ae96230d8255a72471763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Cavitation</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Critical pressure</topic><topic>Growth models</topic><topic>Inclusions</topic><topic>Interdiffusion</topic><topic>Liquid metals</topic><topic>Materials Science</topic><topic>Metallic Materials</topic><topic>Molar volume</topic><topic>Nanotechnology</topic><topic>Original Research Article</topic><topic>Solidification</topic><topic>Solids</topic><topic>Structural Materials</topic><topic>Surfaces and Interfaces</topic><topic>Thermodynamics</topic><topic>Thin Films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kuziora, Stephane Leonard</creatorcontrib><creatorcontrib>Aasmundtveit, Knut Eilif</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Metallurgical and materials transactions. A, Physical metallurgy and materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kuziora, Stephane Leonard</au><au>Aasmundtveit, Knut Eilif</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Solid–Liquid Diffusion Stresses Leading to Voiding</atitle><jtitle>Metallurgical and materials transactions. A, Physical metallurgy and materials science</jtitle><stitle>Metall Mater Trans A</stitle><date>2025</date><risdate>2025</risdate><volume>56</volume><issue>1</issue><spage>219</spage><epage>227</epage><pages>219-227</pages><issn>1073-5623</issn><eissn>1543-1940</eissn><abstract>This paper discusses cavitation within a two-phase solid–liquid enclosed system due to interdiffusion. This mechanism is discussed within the context of solid–liquid interdiffusion bonding for metal systems and the voids which are caused by this mechanism. A case study composed of liquid (Sn), Ni
3
Sn
4
, and (Ni) phases was used. The mechanical tension and bubble volume resulting from the mechanically enclosed system during isothermal solidification at 250 °C were calculated using a fitted 1D growth model coupled with thermodynamics. Thermodynamic energy calculations showed that it becomes favorable for cavitation after 6 seconds for a starting liquid pocket of 5
µ
m
3
. The critical pressure for this cavitation was − 0.029 GPa. The volumetric change for the reaction was determined to be − 12.3 vol pct by a partial molar volume balance. While the volumetric change determined by the thermodynamics found − 7.2 vol pct. The likely presence of unwettable inclusions in non-pure liquids would circumvent this cavitation mechanism, even though cavitation conditions are present. Meaning cavitation for these systems can only be expected when the liquid metal purity is sufficient. Lastly, the bubble growth is attributed to a combination of thermodynamic bubble growth and Kirkendall vacancies.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11661-024-07618-y</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1073-5623 |
ispartof | Metallurgical and materials transactions. A, Physical metallurgy and materials science, 2025, Vol.56 (1), p.219-227 |
issn | 1073-5623 1543-1940 |
language | eng |
recordid | cdi_proquest_journals_3147279180 |
source | SpringerLink Journals - AutoHoldings |
subjects | Cavitation Characterization and Evaluation of Materials Chemistry and Materials Science Critical pressure Growth models Inclusions Interdiffusion Liquid metals Materials Science Metallic Materials Molar volume Nanotechnology Original Research Article Solidification Solids Structural Materials Surfaces and Interfaces Thermodynamics Thin Films |
title | Solid–Liquid Diffusion Stresses Leading to Voiding |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T01%3A10%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Solid%E2%80%93Liquid%20Diffusion%20Stresses%20Leading%20to%20Voiding&rft.jtitle=Metallurgical%20and%20materials%20transactions.%20A,%20Physical%20metallurgy%20and%20materials%20science&rft.au=Kuziora,%20Stephane%20Leonard&rft.date=2025&rft.volume=56&rft.issue=1&rft.spage=219&rft.epage=227&rft.pages=219-227&rft.issn=1073-5623&rft.eissn=1543-1940&rft_id=info:doi/10.1007/s11661-024-07618-y&rft_dat=%3Cproquest_cross%3E3147279180%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3147279180&rft_id=info:pmid/&rfr_iscdi=true |