Hybrid Energy Systems: Synergy Margin and Control Co‐Design

ABSTRACT Extraordinary properties emerge from subsystems' interactions. Hybrid energy systems (HESs) are a promising concept that could change the renewable energy landscape. By co‐designing generation, storage, and conversion technologies, HESs can provide new electrical power services, increa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced control for applications 2024-12, Vol.6 (4), p.n/a
1. Verfasser: Garcia‐Sanz, Mario
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 4
container_start_page
container_title Advanced control for applications
container_volume 6
creator Garcia‐Sanz, Mario
description ABSTRACT Extraordinary properties emerge from subsystems' interactions. Hybrid energy systems (HESs) are a promising concept that could change the renewable energy landscape. By co‐designing generation, storage, and conversion technologies, HESs can provide new electrical power services, increase grid stability and control authority, and generate energy and/or nonenergy products such as electricity, hydrogen, ammonia, heat, digital data, or fresh water. This article discusses some conditions the co‐design of HESs should follow to optimize the combined system (synergy), avoiding deterioration (dysfunction). It introduces some technoeconomic synergy conditions, develops a synergy margin, and analyses several case studies, exploring also the control co‐design methodology to optimize synergistically the hybrid system. New electrical power services and a variety of products such as hydrogen, ammonia, heat, digital data or fresh water emerge from the synergetic co‐design of energy generation, storage and conversion systems. This article introduces a Synergy Margin and explores the Control Co‐Design methodology to optimize them.
doi_str_mv 10.1002/adc2.238
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3147266739</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3147266739</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1338-3bfb0740acb9d2f5d33e576ec58f0664a0ff3d979b5538de2c593f8ba0f4cd023</originalsourceid><addsrcrecordid>eNp1kMtKw0AYhQdRsNSCjxBw4yZ1LpnMRHBR0mqFigt1Pcw1pKRJnWmR7HwEn9EncUJcuHF1DoeP_4cPgEsE5whCfCONxnNM-AmYYMp4Chlmp3_6OZiFsIURRVlGMZuAu3WvfG2SVWt91ScvfTjYXbiNZRyepK_qNpGtScquPfiuifn9-bW0oa7aC3DmZBPs7Den4O1-9Vqu083zw2O52KQaEcJTopyCLINSq8JgRw0hlrLcasodzPNMQueIKVihKCXcWKxpQRxXcc-0gZhMwdV4d--796MNB7Htjr6NLwVBGcN5zkgRqeuR0r4LwVsn9r7eSd8LBMXgRwx-RPQT0XREP-rG9v9yYrEs8cD_ANBqZY4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3147266739</pqid></control><display><type>article</type><title>Hybrid Energy Systems: Synergy Margin and Control Co‐Design</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Garcia‐Sanz, Mario</creator><creatorcontrib>Garcia‐Sanz, Mario</creatorcontrib><description>ABSTRACT Extraordinary properties emerge from subsystems' interactions. Hybrid energy systems (HESs) are a promising concept that could change the renewable energy landscape. By co‐designing generation, storage, and conversion technologies, HESs can provide new electrical power services, increase grid stability and control authority, and generate energy and/or nonenergy products such as electricity, hydrogen, ammonia, heat, digital data, or fresh water. This article discusses some conditions the co‐design of HESs should follow to optimize the combined system (synergy), avoiding deterioration (dysfunction). It introduces some technoeconomic synergy conditions, develops a synergy margin, and analyses several case studies, exploring also the control co‐design methodology to optimize synergistically the hybrid system. New electrical power services and a variety of products such as hydrogen, ammonia, heat, digital data or fresh water emerge from the synergetic co‐design of energy generation, storage and conversion systems. This article introduces a Synergy Margin and explores the Control Co‐Design methodology to optimize them.</description><identifier>ISSN: 2578-0727</identifier><identifier>EISSN: 2578-0727</identifier><identifier>DOI: 10.1002/adc2.238</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>Ammonia ; Co-design ; control co‐design ; Control stability ; Design optimization ; Digital data ; Fresh water ; hybrid energy systems ; hybrid power plants ; Hybrid systems ; levelized cost of energy ; multivector hybrid energy systems ; optimization ; performance metrics ; Subsystems</subject><ispartof>Advanced control for applications, 2024-12, Vol.6 (4), p.n/a</ispartof><rights>2024 The Author(s). published by John Wiley &amp; Sons Ltd.</rights><rights>2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1338-3bfb0740acb9d2f5d33e576ec58f0664a0ff3d979b5538de2c593f8ba0f4cd023</cites><orcidid>0000-0003-2986-9191</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadc2.238$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadc2.238$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Garcia‐Sanz, Mario</creatorcontrib><title>Hybrid Energy Systems: Synergy Margin and Control Co‐Design</title><title>Advanced control for applications</title><description>ABSTRACT Extraordinary properties emerge from subsystems' interactions. Hybrid energy systems (HESs) are a promising concept that could change the renewable energy landscape. By co‐designing generation, storage, and conversion technologies, HESs can provide new electrical power services, increase grid stability and control authority, and generate energy and/or nonenergy products such as electricity, hydrogen, ammonia, heat, digital data, or fresh water. This article discusses some conditions the co‐design of HESs should follow to optimize the combined system (synergy), avoiding deterioration (dysfunction). It introduces some technoeconomic synergy conditions, develops a synergy margin, and analyses several case studies, exploring also the control co‐design methodology to optimize synergistically the hybrid system. New electrical power services and a variety of products such as hydrogen, ammonia, heat, digital data or fresh water emerge from the synergetic co‐design of energy generation, storage and conversion systems. This article introduces a Synergy Margin and explores the Control Co‐Design methodology to optimize them.</description><subject>Ammonia</subject><subject>Co-design</subject><subject>control co‐design</subject><subject>Control stability</subject><subject>Design optimization</subject><subject>Digital data</subject><subject>Fresh water</subject><subject>hybrid energy systems</subject><subject>hybrid power plants</subject><subject>Hybrid systems</subject><subject>levelized cost of energy</subject><subject>multivector hybrid energy systems</subject><subject>optimization</subject><subject>performance metrics</subject><subject>Subsystems</subject><issn>2578-0727</issn><issn>2578-0727</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNp1kMtKw0AYhQdRsNSCjxBw4yZ1LpnMRHBR0mqFigt1Pcw1pKRJnWmR7HwEn9EncUJcuHF1DoeP_4cPgEsE5whCfCONxnNM-AmYYMp4Chlmp3_6OZiFsIURRVlGMZuAu3WvfG2SVWt91ScvfTjYXbiNZRyepK_qNpGtScquPfiuifn9-bW0oa7aC3DmZBPs7Den4O1-9Vqu083zw2O52KQaEcJTopyCLINSq8JgRw0hlrLcasodzPNMQueIKVihKCXcWKxpQRxXcc-0gZhMwdV4d--796MNB7Htjr6NLwVBGcN5zkgRqeuR0r4LwVsn9r7eSd8LBMXgRwx-RPQT0XREP-rG9v9yYrEs8cD_ANBqZY4</recordid><startdate>202412</startdate><enddate>202412</enddate><creator>Garcia‐Sanz, Mario</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><orcidid>https://orcid.org/0000-0003-2986-9191</orcidid></search><sort><creationdate>202412</creationdate><title>Hybrid Energy Systems: Synergy Margin and Control Co‐Design</title><author>Garcia‐Sanz, Mario</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1338-3bfb0740acb9d2f5d33e576ec58f0664a0ff3d979b5538de2c593f8ba0f4cd023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Ammonia</topic><topic>Co-design</topic><topic>control co‐design</topic><topic>Control stability</topic><topic>Design optimization</topic><topic>Digital data</topic><topic>Fresh water</topic><topic>hybrid energy systems</topic><topic>hybrid power plants</topic><topic>Hybrid systems</topic><topic>levelized cost of energy</topic><topic>multivector hybrid energy systems</topic><topic>optimization</topic><topic>performance metrics</topic><topic>Subsystems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Garcia‐Sanz, Mario</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Advanced control for applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Garcia‐Sanz, Mario</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hybrid Energy Systems: Synergy Margin and Control Co‐Design</atitle><jtitle>Advanced control for applications</jtitle><date>2024-12</date><risdate>2024</risdate><volume>6</volume><issue>4</issue><epage>n/a</epage><issn>2578-0727</issn><eissn>2578-0727</eissn><abstract>ABSTRACT Extraordinary properties emerge from subsystems' interactions. Hybrid energy systems (HESs) are a promising concept that could change the renewable energy landscape. By co‐designing generation, storage, and conversion technologies, HESs can provide new electrical power services, increase grid stability and control authority, and generate energy and/or nonenergy products such as electricity, hydrogen, ammonia, heat, digital data, or fresh water. This article discusses some conditions the co‐design of HESs should follow to optimize the combined system (synergy), avoiding deterioration (dysfunction). It introduces some technoeconomic synergy conditions, develops a synergy margin, and analyses several case studies, exploring also the control co‐design methodology to optimize synergistically the hybrid system. New electrical power services and a variety of products such as hydrogen, ammonia, heat, digital data or fresh water emerge from the synergetic co‐design of energy generation, storage and conversion systems. This article introduces a Synergy Margin and explores the Control Co‐Design methodology to optimize them.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/adc2.238</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-2986-9191</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2578-0727
ispartof Advanced control for applications, 2024-12, Vol.6 (4), p.n/a
issn 2578-0727
2578-0727
language eng
recordid cdi_proquest_journals_3147266739
source Wiley Online Library Journals Frontfile Complete
subjects Ammonia
Co-design
control co‐design
Control stability
Design optimization
Digital data
Fresh water
hybrid energy systems
hybrid power plants
Hybrid systems
levelized cost of energy
multivector hybrid energy systems
optimization
performance metrics
Subsystems
title Hybrid Energy Systems: Synergy Margin and Control Co‐Design
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T07%3A00%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hybrid%20Energy%20Systems:%20Synergy%20Margin%20and%20Control%20Co%E2%80%90Design&rft.jtitle=Advanced%20control%20for%20applications&rft.au=Garcia%E2%80%90Sanz,%20Mario&rft.date=2024-12&rft.volume=6&rft.issue=4&rft.epage=n/a&rft.issn=2578-0727&rft.eissn=2578-0727&rft_id=info:doi/10.1002/adc2.238&rft_dat=%3Cproquest_cross%3E3147266739%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3147266739&rft_id=info:pmid/&rfr_iscdi=true