Hybrid Energy Systems: Synergy Margin and Control Co‐Design
ABSTRACT Extraordinary properties emerge from subsystems' interactions. Hybrid energy systems (HESs) are a promising concept that could change the renewable energy landscape. By co‐designing generation, storage, and conversion technologies, HESs can provide new electrical power services, increa...
Gespeichert in:
Veröffentlicht in: | Advanced control for applications 2024-12, Vol.6 (4), p.n/a |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 4 |
container_start_page | |
container_title | Advanced control for applications |
container_volume | 6 |
creator | Garcia‐Sanz, Mario |
description | ABSTRACT
Extraordinary properties emerge from subsystems' interactions. Hybrid energy systems (HESs) are a promising concept that could change the renewable energy landscape. By co‐designing generation, storage, and conversion technologies, HESs can provide new electrical power services, increase grid stability and control authority, and generate energy and/or nonenergy products such as electricity, hydrogen, ammonia, heat, digital data, or fresh water. This article discusses some conditions the co‐design of HESs should follow to optimize the combined system (synergy), avoiding deterioration (dysfunction). It introduces some technoeconomic synergy conditions, develops a synergy margin, and analyses several case studies, exploring also the control co‐design methodology to optimize synergistically the hybrid system.
New electrical power services and a variety of products such as hydrogen, ammonia, heat, digital data or fresh water emerge from the synergetic co‐design of energy generation, storage and conversion systems. This article introduces a Synergy Margin and explores the Control Co‐Design methodology to optimize them. |
doi_str_mv | 10.1002/adc2.238 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3147266739</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3147266739</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1338-3bfb0740acb9d2f5d33e576ec58f0664a0ff3d979b5538de2c593f8ba0f4cd023</originalsourceid><addsrcrecordid>eNp1kMtKw0AYhQdRsNSCjxBw4yZ1LpnMRHBR0mqFigt1Pcw1pKRJnWmR7HwEn9EncUJcuHF1DoeP_4cPgEsE5whCfCONxnNM-AmYYMp4Chlmp3_6OZiFsIURRVlGMZuAu3WvfG2SVWt91ScvfTjYXbiNZRyepK_qNpGtScquPfiuifn9-bW0oa7aC3DmZBPs7Den4O1-9Vqu083zw2O52KQaEcJTopyCLINSq8JgRw0hlrLcasodzPNMQueIKVihKCXcWKxpQRxXcc-0gZhMwdV4d--796MNB7Htjr6NLwVBGcN5zkgRqeuR0r4LwVsn9r7eSd8LBMXgRwx-RPQT0XREP-rG9v9yYrEs8cD_ANBqZY4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3147266739</pqid></control><display><type>article</type><title>Hybrid Energy Systems: Synergy Margin and Control Co‐Design</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Garcia‐Sanz, Mario</creator><creatorcontrib>Garcia‐Sanz, Mario</creatorcontrib><description>ABSTRACT
Extraordinary properties emerge from subsystems' interactions. Hybrid energy systems (HESs) are a promising concept that could change the renewable energy landscape. By co‐designing generation, storage, and conversion technologies, HESs can provide new electrical power services, increase grid stability and control authority, and generate energy and/or nonenergy products such as electricity, hydrogen, ammonia, heat, digital data, or fresh water. This article discusses some conditions the co‐design of HESs should follow to optimize the combined system (synergy), avoiding deterioration (dysfunction). It introduces some technoeconomic synergy conditions, develops a synergy margin, and analyses several case studies, exploring also the control co‐design methodology to optimize synergistically the hybrid system.
New electrical power services and a variety of products such as hydrogen, ammonia, heat, digital data or fresh water emerge from the synergetic co‐design of energy generation, storage and conversion systems. This article introduces a Synergy Margin and explores the Control Co‐Design methodology to optimize them.</description><identifier>ISSN: 2578-0727</identifier><identifier>EISSN: 2578-0727</identifier><identifier>DOI: 10.1002/adc2.238</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><subject>Ammonia ; Co-design ; control co‐design ; Control stability ; Design optimization ; Digital data ; Fresh water ; hybrid energy systems ; hybrid power plants ; Hybrid systems ; levelized cost of energy ; multivector hybrid energy systems ; optimization ; performance metrics ; Subsystems</subject><ispartof>Advanced control for applications, 2024-12, Vol.6 (4), p.n/a</ispartof><rights>2024 The Author(s). published by John Wiley & Sons Ltd.</rights><rights>2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1338-3bfb0740acb9d2f5d33e576ec58f0664a0ff3d979b5538de2c593f8ba0f4cd023</cites><orcidid>0000-0003-2986-9191</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadc2.238$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadc2.238$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Garcia‐Sanz, Mario</creatorcontrib><title>Hybrid Energy Systems: Synergy Margin and Control Co‐Design</title><title>Advanced control for applications</title><description>ABSTRACT
Extraordinary properties emerge from subsystems' interactions. Hybrid energy systems (HESs) are a promising concept that could change the renewable energy landscape. By co‐designing generation, storage, and conversion technologies, HESs can provide new electrical power services, increase grid stability and control authority, and generate energy and/or nonenergy products such as electricity, hydrogen, ammonia, heat, digital data, or fresh water. This article discusses some conditions the co‐design of HESs should follow to optimize the combined system (synergy), avoiding deterioration (dysfunction). It introduces some technoeconomic synergy conditions, develops a synergy margin, and analyses several case studies, exploring also the control co‐design methodology to optimize synergistically the hybrid system.
New electrical power services and a variety of products such as hydrogen, ammonia, heat, digital data or fresh water emerge from the synergetic co‐design of energy generation, storage and conversion systems. This article introduces a Synergy Margin and explores the Control Co‐Design methodology to optimize them.</description><subject>Ammonia</subject><subject>Co-design</subject><subject>control co‐design</subject><subject>Control stability</subject><subject>Design optimization</subject><subject>Digital data</subject><subject>Fresh water</subject><subject>hybrid energy systems</subject><subject>hybrid power plants</subject><subject>Hybrid systems</subject><subject>levelized cost of energy</subject><subject>multivector hybrid energy systems</subject><subject>optimization</subject><subject>performance metrics</subject><subject>Subsystems</subject><issn>2578-0727</issn><issn>2578-0727</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNp1kMtKw0AYhQdRsNSCjxBw4yZ1LpnMRHBR0mqFigt1Pcw1pKRJnWmR7HwEn9EncUJcuHF1DoeP_4cPgEsE5whCfCONxnNM-AmYYMp4Chlmp3_6OZiFsIURRVlGMZuAu3WvfG2SVWt91ScvfTjYXbiNZRyepK_qNpGtScquPfiuifn9-bW0oa7aC3DmZBPs7Den4O1-9Vqu083zw2O52KQaEcJTopyCLINSq8JgRw0hlrLcasodzPNMQueIKVihKCXcWKxpQRxXcc-0gZhMwdV4d--796MNB7Htjr6NLwVBGcN5zkgRqeuR0r4LwVsn9r7eSd8LBMXgRwx-RPQT0XREP-rG9v9yYrEs8cD_ANBqZY4</recordid><startdate>202412</startdate><enddate>202412</enddate><creator>Garcia‐Sanz, Mario</creator><general>John Wiley & Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><orcidid>https://orcid.org/0000-0003-2986-9191</orcidid></search><sort><creationdate>202412</creationdate><title>Hybrid Energy Systems: Synergy Margin and Control Co‐Design</title><author>Garcia‐Sanz, Mario</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1338-3bfb0740acb9d2f5d33e576ec58f0664a0ff3d979b5538de2c593f8ba0f4cd023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Ammonia</topic><topic>Co-design</topic><topic>control co‐design</topic><topic>Control stability</topic><topic>Design optimization</topic><topic>Digital data</topic><topic>Fresh water</topic><topic>hybrid energy systems</topic><topic>hybrid power plants</topic><topic>Hybrid systems</topic><topic>levelized cost of energy</topic><topic>multivector hybrid energy systems</topic><topic>optimization</topic><topic>performance metrics</topic><topic>Subsystems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Garcia‐Sanz, Mario</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Advanced control for applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Garcia‐Sanz, Mario</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hybrid Energy Systems: Synergy Margin and Control Co‐Design</atitle><jtitle>Advanced control for applications</jtitle><date>2024-12</date><risdate>2024</risdate><volume>6</volume><issue>4</issue><epage>n/a</epage><issn>2578-0727</issn><eissn>2578-0727</eissn><abstract>ABSTRACT
Extraordinary properties emerge from subsystems' interactions. Hybrid energy systems (HESs) are a promising concept that could change the renewable energy landscape. By co‐designing generation, storage, and conversion technologies, HESs can provide new electrical power services, increase grid stability and control authority, and generate energy and/or nonenergy products such as electricity, hydrogen, ammonia, heat, digital data, or fresh water. This article discusses some conditions the co‐design of HESs should follow to optimize the combined system (synergy), avoiding deterioration (dysfunction). It introduces some technoeconomic synergy conditions, develops a synergy margin, and analyses several case studies, exploring also the control co‐design methodology to optimize synergistically the hybrid system.
New electrical power services and a variety of products such as hydrogen, ammonia, heat, digital data or fresh water emerge from the synergetic co‐design of energy generation, storage and conversion systems. This article introduces a Synergy Margin and explores the Control Co‐Design methodology to optimize them.</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1002/adc2.238</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-2986-9191</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2578-0727 |
ispartof | Advanced control for applications, 2024-12, Vol.6 (4), p.n/a |
issn | 2578-0727 2578-0727 |
language | eng |
recordid | cdi_proquest_journals_3147266739 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Ammonia Co-design control co‐design Control stability Design optimization Digital data Fresh water hybrid energy systems hybrid power plants Hybrid systems levelized cost of energy multivector hybrid energy systems optimization performance metrics Subsystems |
title | Hybrid Energy Systems: Synergy Margin and Control Co‐Design |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T07%3A00%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hybrid%20Energy%20Systems:%20Synergy%20Margin%20and%20Control%20Co%E2%80%90Design&rft.jtitle=Advanced%20control%20for%20applications&rft.au=Garcia%E2%80%90Sanz,%20Mario&rft.date=2024-12&rft.volume=6&rft.issue=4&rft.epage=n/a&rft.issn=2578-0727&rft.eissn=2578-0727&rft_id=info:doi/10.1002/adc2.238&rft_dat=%3Cproquest_cross%3E3147266739%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3147266739&rft_id=info:pmid/&rfr_iscdi=true |