A novel necessary and sufficient condition for the stability of \(2\times 2\) first-order linear hyperbolic systems

In this paper, we establish a necessary and sufficient stability condition for a class of two coupled first-order linear hyperbolic partial differential equations. Through a backstepping transform, the problem is reformulated as a stability problem for an integral difference equation, that is, a dif...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-12
Hauptverfasser: Balogoun, Ismaïla, Mazanti, Guilherme, Auriol, Jean, Islam Boussaada
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Balogoun, Ismaïla
Mazanti, Guilherme
Auriol, Jean
Islam Boussaada
description In this paper, we establish a necessary and sufficient stability condition for a class of two coupled first-order linear hyperbolic partial differential equations. Through a backstepping transform, the problem is reformulated as a stability problem for an integral difference equation, that is, a difference equation with distributed delay. Building upon a Stépán--Hassard argument variation theorem originally designed for time-delay systems of retarded type, we then introduce a theorem that counts the number of unstable roots of our integral difference equation. This leads to the expected necessary and sufficient stability criterion for the system of first-order linear hyperbolic partial differential equations. Finally, we validate our theoretical findings through simulations.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3147263893</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3147263893</sourcerecordid><originalsourceid>FETCH-proquest_journals_31472638933</originalsourceid><addsrcrecordid>eNqNyk1qAkEQQOEmICjROxS4SRYDY7d_WQaJ5ABZDkjPTDWWtF1aVSPM7ZOFB8jqLb734mY-hFW1X3s_dQvVS13Xfrvzm02YOf2Ewg_MULBD1SgjxNKDDilRR1gMOi49GXGBxAJ2RlCLLWWyEThB8-Yboysq-OYdEolaxdKjQKaCUeA83lBaztSBjmp41bmbpJgVF8--uuXx6-fwXd2E7wOqnS48SPmjU1itd34b9h8h_O_6BbQmS-I</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3147263893</pqid></control><display><type>article</type><title>A novel necessary and sufficient condition for the stability of \(2\times 2\) first-order linear hyperbolic systems</title><source>Free E- Journals</source><creator>Balogoun, Ismaïla ; Mazanti, Guilherme ; Auriol, Jean ; Islam Boussaada</creator><creatorcontrib>Balogoun, Ismaïla ; Mazanti, Guilherme ; Auriol, Jean ; Islam Boussaada</creatorcontrib><description>In this paper, we establish a necessary and sufficient stability condition for a class of two coupled first-order linear hyperbolic partial differential equations. Through a backstepping transform, the problem is reformulated as a stability problem for an integral difference equation, that is, a difference equation with distributed delay. Building upon a Stépán--Hassard argument variation theorem originally designed for time-delay systems of retarded type, we then introduce a theorem that counts the number of unstable roots of our integral difference equation. This leads to the expected necessary and sufficient stability criterion for the system of first-order linear hyperbolic partial differential equations. Finally, we validate our theoretical findings through simulations.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Difference equations ; Hyperbolic systems ; Partial differential equations ; Stability criteria ; Theorems ; Time delay systems</subject><ispartof>arXiv.org, 2024-12</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Balogoun, Ismaïla</creatorcontrib><creatorcontrib>Mazanti, Guilherme</creatorcontrib><creatorcontrib>Auriol, Jean</creatorcontrib><creatorcontrib>Islam Boussaada</creatorcontrib><title>A novel necessary and sufficient condition for the stability of \(2\times 2\) first-order linear hyperbolic systems</title><title>arXiv.org</title><description>In this paper, we establish a necessary and sufficient stability condition for a class of two coupled first-order linear hyperbolic partial differential equations. Through a backstepping transform, the problem is reformulated as a stability problem for an integral difference equation, that is, a difference equation with distributed delay. Building upon a Stépán--Hassard argument variation theorem originally designed for time-delay systems of retarded type, we then introduce a theorem that counts the number of unstable roots of our integral difference equation. This leads to the expected necessary and sufficient stability criterion for the system of first-order linear hyperbolic partial differential equations. Finally, we validate our theoretical findings through simulations.</description><subject>Difference equations</subject><subject>Hyperbolic systems</subject><subject>Partial differential equations</subject><subject>Stability criteria</subject><subject>Theorems</subject><subject>Time delay systems</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNyk1qAkEQQOEmICjROxS4SRYDY7d_WQaJ5ABZDkjPTDWWtF1aVSPM7ZOFB8jqLb734mY-hFW1X3s_dQvVS13Xfrvzm02YOf2Ewg_MULBD1SgjxNKDDilRR1gMOi49GXGBxAJ2RlCLLWWyEThB8-Yboysq-OYdEolaxdKjQKaCUeA83lBaztSBjmp41bmbpJgVF8--uuXx6-fwXd2E7wOqnS48SPmjU1itd34b9h8h_O_6BbQmS-I</recordid><startdate>20241218</startdate><enddate>20241218</enddate><creator>Balogoun, Ismaïla</creator><creator>Mazanti, Guilherme</creator><creator>Auriol, Jean</creator><creator>Islam Boussaada</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20241218</creationdate><title>A novel necessary and sufficient condition for the stability of \(2\times 2\) first-order linear hyperbolic systems</title><author>Balogoun, Ismaïla ; Mazanti, Guilherme ; Auriol, Jean ; Islam Boussaada</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_31472638933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Difference equations</topic><topic>Hyperbolic systems</topic><topic>Partial differential equations</topic><topic>Stability criteria</topic><topic>Theorems</topic><topic>Time delay systems</topic><toplevel>online_resources</toplevel><creatorcontrib>Balogoun, Ismaïla</creatorcontrib><creatorcontrib>Mazanti, Guilherme</creatorcontrib><creatorcontrib>Auriol, Jean</creatorcontrib><creatorcontrib>Islam Boussaada</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Balogoun, Ismaïla</au><au>Mazanti, Guilherme</au><au>Auriol, Jean</au><au>Islam Boussaada</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>A novel necessary and sufficient condition for the stability of \(2\times 2\) first-order linear hyperbolic systems</atitle><jtitle>arXiv.org</jtitle><date>2024-12-18</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>In this paper, we establish a necessary and sufficient stability condition for a class of two coupled first-order linear hyperbolic partial differential equations. Through a backstepping transform, the problem is reformulated as a stability problem for an integral difference equation, that is, a difference equation with distributed delay. Building upon a Stépán--Hassard argument variation theorem originally designed for time-delay systems of retarded type, we then introduce a theorem that counts the number of unstable roots of our integral difference equation. This leads to the expected necessary and sufficient stability criterion for the system of first-order linear hyperbolic partial differential equations. Finally, we validate our theoretical findings through simulations.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-12
issn 2331-8422
language eng
recordid cdi_proquest_journals_3147263893
source Free E- Journals
subjects Difference equations
Hyperbolic systems
Partial differential equations
Stability criteria
Theorems
Time delay systems
title A novel necessary and sufficient condition for the stability of \(2\times 2\) first-order linear hyperbolic systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T18%3A19%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=A%20novel%20necessary%20and%20sufficient%20condition%20for%20the%20stability%20of%20%5C(2%5Ctimes%202%5C)%20first-order%20linear%20hyperbolic%20systems&rft.jtitle=arXiv.org&rft.au=Balogoun,%20Isma%C3%AFla&rft.date=2024-12-18&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3147263893%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3147263893&rft_id=info:pmid/&rfr_iscdi=true