Deep Learning CNN-LSTM Approach for Identifying Welder’s Hand Motion Gestures Using Wearable Sensors
A welder plays a crucial role in the construction of a new ship. Monitoring the performance of welders involved in the construction of a ship is particularly important for controlling dimensions. he competency and consistency of welders play a vital role, with specific hand movement patterns contrib...
Gespeichert in:
Veröffentlicht in: | IOP conference series. Earth and environmental science 2024-12, Vol.1423 (1), p.12036 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 12036 |
container_title | IOP conference series. Earth and environmental science |
container_volume | 1423 |
creator | Virmansyah, Vialdo Muhammad Pribadi, Triwilaswandio Wuruk Baihaqi, Imam |
description | A welder plays a crucial role in the construction of a new ship. Monitoring the performance of welders involved in the construction of a ship is particularly important for controlling dimensions. he competency and consistency of welders play a vital role, with specific hand movement patterns contributing to welding quality. This study aims to identify individual welders’ hand movement patterns using Deep Learning with CNN-LSTM configurations. Data was collected through IMU motion sensors attached to welders’ wrists, capturing acceleration, angular speed, magnetic force, and electric current changes. The data was classified using CNN-LSTM, which showed higher accuracy than SVM methods. Experimental results indicated an overall classification accuracy of 99.73% for identifying individual welders and 97.07% for determining welding positions. |
doi_str_mv | 10.1088/1755-1315/1423/1/012036 |
format | Article |
fullrecord | <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_proquest_journals_3147096692</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3147096692</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2036-895719d08adf9c22351799c0379d083623f6f4de3dc6c7a08e10cf6ba7dc39fc3</originalsourceid><addsrcrecordid>eNqFkE9LwzAYh4MoOKefwYAnD7VJ0ybNccy5Dbp52IbHkOWPdsymJtthN7-GX89PYktlIgieEpLn974_HgCuMbrDKM9jzLIswgRnMU4TEuMY4QQRegJ6x5_T4x2xc3ARwgYhylLCe8DeG1PDwkhfldUzHM7nUbFYzuCgrr2T6gVa5-FUm2pX2kNLPJmtNv7z_SPAiaw0nLld6So4NmG39ybAVego6eV6a-DCVMH5cAnOrNwGc_V99sHqYbQcTqLicTwdDopItZ2jnGcMc41yqS1XSUIyzDhXiLD2kdCEWGpTbYhWVDGJcoORsnQtmVaEW0X64Kab27R_2zedxMbtfdWsFASnDHFKedJQrKOUdyF4Y0Xty1fpDwIj0UoVrS7RqhOtVIFFJ7VJki5Zuvpn9P-p2z9So9HiNydqbckXVXiGHA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3147096692</pqid></control><display><type>article</type><title>Deep Learning CNN-LSTM Approach for Identifying Welder’s Hand Motion Gestures Using Wearable Sensors</title><source>IOP Publishing Free Content</source><source>Institute of Physics IOPscience extra</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Virmansyah, Vialdo Muhammad ; Pribadi, Triwilaswandio Wuruk ; Baihaqi, Imam</creator><creatorcontrib>Virmansyah, Vialdo Muhammad ; Pribadi, Triwilaswandio Wuruk ; Baihaqi, Imam</creatorcontrib><description>A welder plays a crucial role in the construction of a new ship. Monitoring the performance of welders involved in the construction of a ship is particularly important for controlling dimensions. he competency and consistency of welders play a vital role, with specific hand movement patterns contributing to welding quality. This study aims to identify individual welders’ hand movement patterns using Deep Learning with CNN-LSTM configurations. Data was collected through IMU motion sensors attached to welders’ wrists, capturing acceleration, angular speed, magnetic force, and electric current changes. The data was classified using CNN-LSTM, which showed higher accuracy than SVM methods. Experimental results indicated an overall classification accuracy of 99.73% for identifying individual welders and 97.07% for determining welding positions.</description><identifier>ISSN: 1755-1307</identifier><identifier>EISSN: 1755-1315</identifier><identifier>DOI: 10.1088/1755-1315/1423/1/012036</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Acceleration ; Angular speed ; Convolutional Neural Network-Long Short Term Memory ; Deep Learning ; Hand (anatomy) ; Machine learning ; Magnetic fields ; Motion sensors ; Movement ; Sensors ; Wearable Device ; Welding ; Welding machines</subject><ispartof>IOP conference series. Earth and environmental science, 2024-12, Vol.1423 (1), p.12036</ispartof><rights>Published under licence by IOP Publishing Ltd</rights><rights>Published under licence by IOP Publishing Ltd. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2036-895719d08adf9c22351799c0379d083623f6f4de3dc6c7a08e10cf6ba7dc39fc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1755-1315/1423/1/012036/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,777,781,27905,27906,38849,38871,53821,53848</link.rule.ids></links><search><creatorcontrib>Virmansyah, Vialdo Muhammad</creatorcontrib><creatorcontrib>Pribadi, Triwilaswandio Wuruk</creatorcontrib><creatorcontrib>Baihaqi, Imam</creatorcontrib><title>Deep Learning CNN-LSTM Approach for Identifying Welder’s Hand Motion Gestures Using Wearable Sensors</title><title>IOP conference series. Earth and environmental science</title><addtitle>IOP Conf. Ser.: Earth Environ. Sci</addtitle><description>A welder plays a crucial role in the construction of a new ship. Monitoring the performance of welders involved in the construction of a ship is particularly important for controlling dimensions. he competency and consistency of welders play a vital role, with specific hand movement patterns contributing to welding quality. This study aims to identify individual welders’ hand movement patterns using Deep Learning with CNN-LSTM configurations. Data was collected through IMU motion sensors attached to welders’ wrists, capturing acceleration, angular speed, magnetic force, and electric current changes. The data was classified using CNN-LSTM, which showed higher accuracy than SVM methods. Experimental results indicated an overall classification accuracy of 99.73% for identifying individual welders and 97.07% for determining welding positions.</description><subject>Acceleration</subject><subject>Angular speed</subject><subject>Convolutional Neural Network-Long Short Term Memory</subject><subject>Deep Learning</subject><subject>Hand (anatomy)</subject><subject>Machine learning</subject><subject>Magnetic fields</subject><subject>Motion sensors</subject><subject>Movement</subject><subject>Sensors</subject><subject>Wearable Device</subject><subject>Welding</subject><subject>Welding machines</subject><issn>1755-1307</issn><issn>1755-1315</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFkE9LwzAYh4MoOKefwYAnD7VJ0ybNccy5Dbp52IbHkOWPdsymJtthN7-GX89PYktlIgieEpLn974_HgCuMbrDKM9jzLIswgRnMU4TEuMY4QQRegJ6x5_T4x2xc3ARwgYhylLCe8DeG1PDwkhfldUzHM7nUbFYzuCgrr2T6gVa5-FUm2pX2kNLPJmtNv7z_SPAiaw0nLld6So4NmG39ybAVego6eV6a-DCVMH5cAnOrNwGc_V99sHqYbQcTqLicTwdDopItZ2jnGcMc41yqS1XSUIyzDhXiLD2kdCEWGpTbYhWVDGJcoORsnQtmVaEW0X64Kab27R_2zedxMbtfdWsFASnDHFKedJQrKOUdyF4Y0Xty1fpDwIj0UoVrS7RqhOtVIFFJ7VJki5Zuvpn9P-p2z9So9HiNydqbckXVXiGHA</recordid><startdate>20241201</startdate><enddate>20241201</enddate><creator>Virmansyah, Vialdo Muhammad</creator><creator>Pribadi, Triwilaswandio Wuruk</creator><creator>Baihaqi, Imam</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>PATMY</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PYCSY</scope></search><sort><creationdate>20241201</creationdate><title>Deep Learning CNN-LSTM Approach for Identifying Welder’s Hand Motion Gestures Using Wearable Sensors</title><author>Virmansyah, Vialdo Muhammad ; Pribadi, Triwilaswandio Wuruk ; Baihaqi, Imam</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2036-895719d08adf9c22351799c0379d083623f6f4de3dc6c7a08e10cf6ba7dc39fc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Acceleration</topic><topic>Angular speed</topic><topic>Convolutional Neural Network-Long Short Term Memory</topic><topic>Deep Learning</topic><topic>Hand (anatomy)</topic><topic>Machine learning</topic><topic>Magnetic fields</topic><topic>Motion sensors</topic><topic>Movement</topic><topic>Sensors</topic><topic>Wearable Device</topic><topic>Welding</topic><topic>Welding machines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Virmansyah, Vialdo Muhammad</creatorcontrib><creatorcontrib>Pribadi, Triwilaswandio Wuruk</creatorcontrib><creatorcontrib>Baihaqi, Imam</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Environmental Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Environmental Science Collection</collection><jtitle>IOP conference series. Earth and environmental science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Virmansyah, Vialdo Muhammad</au><au>Pribadi, Triwilaswandio Wuruk</au><au>Baihaqi, Imam</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep Learning CNN-LSTM Approach for Identifying Welder’s Hand Motion Gestures Using Wearable Sensors</atitle><jtitle>IOP conference series. Earth and environmental science</jtitle><addtitle>IOP Conf. Ser.: Earth Environ. Sci</addtitle><date>2024-12-01</date><risdate>2024</risdate><volume>1423</volume><issue>1</issue><spage>12036</spage><pages>12036-</pages><issn>1755-1307</issn><eissn>1755-1315</eissn><abstract>A welder plays a crucial role in the construction of a new ship. Monitoring the performance of welders involved in the construction of a ship is particularly important for controlling dimensions. he competency and consistency of welders play a vital role, with specific hand movement patterns contributing to welding quality. This study aims to identify individual welders’ hand movement patterns using Deep Learning with CNN-LSTM configurations. Data was collected through IMU motion sensors attached to welders’ wrists, capturing acceleration, angular speed, magnetic force, and electric current changes. The data was classified using CNN-LSTM, which showed higher accuracy than SVM methods. Experimental results indicated an overall classification accuracy of 99.73% for identifying individual welders and 97.07% for determining welding positions.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1755-1315/1423/1/012036</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1755-1307 |
ispartof | IOP conference series. Earth and environmental science, 2024-12, Vol.1423 (1), p.12036 |
issn | 1755-1307 1755-1315 |
language | eng |
recordid | cdi_proquest_journals_3147096692 |
source | IOP Publishing Free Content; Institute of Physics IOPscience extra; EZB-FREE-00999 freely available EZB journals |
subjects | Acceleration Angular speed Convolutional Neural Network-Long Short Term Memory Deep Learning Hand (anatomy) Machine learning Magnetic fields Motion sensors Movement Sensors Wearable Device Welding Welding machines |
title | Deep Learning CNN-LSTM Approach for Identifying Welder’s Hand Motion Gestures Using Wearable Sensors |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T00%3A43%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20Learning%20CNN-LSTM%20Approach%20for%20Identifying%20Welder%E2%80%99s%20Hand%20Motion%20Gestures%20Using%20Wearable%20Sensors&rft.jtitle=IOP%20conference%20series.%20Earth%20and%20environmental%20science&rft.au=Virmansyah,%20Vialdo%20Muhammad&rft.date=2024-12-01&rft.volume=1423&rft.issue=1&rft.spage=12036&rft.pages=12036-&rft.issn=1755-1307&rft.eissn=1755-1315&rft_id=info:doi/10.1088/1755-1315/1423/1/012036&rft_dat=%3Cproquest_iop_j%3E3147096692%3C/proquest_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3147096692&rft_id=info:pmid/&rfr_iscdi=true |