Ill-posedness for the Navier-Stokes and Euler equations in Besov spaces
We construct a new initial data to prove the ill-posedness of both Navier-Stokes and Euler equations in weaker Besov spaces in the sense that the solution maps to these equations starting from u 0 are discontinuous at t = 0.
Gespeichert in:
Veröffentlicht in: | Applications of Mathematics 2024-12, Vol.69 (6), p.757-767 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 767 |
---|---|
container_issue | 6 |
container_start_page | 757 |
container_title | Applications of Mathematics |
container_volume | 69 |
creator | Yu, Yanghai Liu, Fang |
description | We construct a new initial data to prove the ill-posedness of both Navier-Stokes and Euler equations in weaker Besov spaces in the sense that the solution maps to these equations starting from
u
0
are discontinuous at
t
= 0. |
doi_str_mv | 10.21136/AM.2024.0089-24 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3147078903</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3147078903</sourcerecordid><originalsourceid>FETCH-LOGICAL-c196t-9bf8d38b1d9f5565fc58cd5c332af7d12804346f2d4e702b8b0053b974747eda3</originalsourceid><addsrcrecordid>eNp1kD1PwzAURS0EEqWwM1pidnn-SGKPpSqlUgsDMFtObENKiVM7qcS_J6VITOgNdznnPukidE1hwijl-e10PWHAxARAKsLECRrRrGBEUVCnaAQyZ6RQAs7RRUobAFC5lCO0WG63pA3J2calhH2IuHt3-NHsaxfJcxc-XMKmsXjeb13Ebtebrg5NwnWD71wKe5xaU7l0ic682SZ39Ztj9Ho_f5k9kNXTYjmbrkhFVd4RVXppuSypVT7L8sxXmaxsVnHOjC8sZRIEF7lnVrgCWClLgIyXqhDDOWv4GN0ce9sYdr1Lnd6EPjbDS82pKKCQCvhAwZGqYkgpOq_bWH-a-KUp6J-59HStD3Ppw1yaiUGhRyUNaPPm4l_xv843eM1rjg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3147078903</pqid></control><display><type>article</type><title>Ill-posedness for the Navier-Stokes and Euler equations in Besov spaces</title><source>SpringerLink Journals - AutoHoldings</source><creator>Yu, Yanghai ; Liu, Fang</creator><creatorcontrib>Yu, Yanghai ; Liu, Fang</creatorcontrib><description>We construct a new initial data to prove the ill-posedness of both Navier-Stokes and Euler equations in weaker Besov spaces in the sense that the solution maps to these equations starting from
u
0
are discontinuous at
t
= 0.</description><identifier>ISSN: 0862-7940</identifier><identifier>EISSN: 1572-9109</identifier><identifier>DOI: 10.21136/AM.2024.0089-24</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Analysis ; Applications of Mathematics ; Classical and Continuum Physics ; Euler-Lagrange equation ; Fluid flow ; Function space ; Ill posed problems ; Mathematical and Computational Engineering ; Mathematical and Computational Physics ; Mathematics ; Mathematics and Statistics ; Navier-Stokes equations ; Optimization ; Theoretical</subject><ispartof>Applications of Mathematics, 2024-12, Vol.69 (6), p.757-767</ispartof><rights>Institute of Mathematics, Czech Academy of Sciences 2024</rights><rights>Copyright Springer Nature B.V. 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.21136/AM.2024.0089-24$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.21136/AM.2024.0089-24$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27915,27916,41479,42548,51310</link.rule.ids></links><search><creatorcontrib>Yu, Yanghai</creatorcontrib><creatorcontrib>Liu, Fang</creatorcontrib><title>Ill-posedness for the Navier-Stokes and Euler equations in Besov spaces</title><title>Applications of Mathematics</title><addtitle>Appl Math</addtitle><description>We construct a new initial data to prove the ill-posedness of both Navier-Stokes and Euler equations in weaker Besov spaces in the sense that the solution maps to these equations starting from
u
0
are discontinuous at
t
= 0.</description><subject>Analysis</subject><subject>Applications of Mathematics</subject><subject>Classical and Continuum Physics</subject><subject>Euler-Lagrange equation</subject><subject>Fluid flow</subject><subject>Function space</subject><subject>Ill posed problems</subject><subject>Mathematical and Computational Engineering</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Navier-Stokes equations</subject><subject>Optimization</subject><subject>Theoretical</subject><issn>0862-7940</issn><issn>1572-9109</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kD1PwzAURS0EEqWwM1pidnn-SGKPpSqlUgsDMFtObENKiVM7qcS_J6VITOgNdznnPukidE1hwijl-e10PWHAxARAKsLECRrRrGBEUVCnaAQyZ6RQAs7RRUobAFC5lCO0WG63pA3J2calhH2IuHt3-NHsaxfJcxc-XMKmsXjeb13Ebtebrg5NwnWD71wKe5xaU7l0ic682SZ39Ztj9Ho_f5k9kNXTYjmbrkhFVd4RVXppuSypVT7L8sxXmaxsVnHOjC8sZRIEF7lnVrgCWClLgIyXqhDDOWv4GN0ce9sYdr1Lnd6EPjbDS82pKKCQCvhAwZGqYkgpOq_bWH-a-KUp6J-59HStD3Ppw1yaiUGhRyUNaPPm4l_xv843eM1rjg</recordid><startdate>20241201</startdate><enddate>20241201</enddate><creator>Yu, Yanghai</creator><creator>Liu, Fang</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20241201</creationdate><title>Ill-posedness for the Navier-Stokes and Euler equations in Besov spaces</title><author>Yu, Yanghai ; Liu, Fang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c196t-9bf8d38b1d9f5565fc58cd5c332af7d12804346f2d4e702b8b0053b974747eda3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Analysis</topic><topic>Applications of Mathematics</topic><topic>Classical and Continuum Physics</topic><topic>Euler-Lagrange equation</topic><topic>Fluid flow</topic><topic>Function space</topic><topic>Ill posed problems</topic><topic>Mathematical and Computational Engineering</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Navier-Stokes equations</topic><topic>Optimization</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yu, Yanghai</creatorcontrib><creatorcontrib>Liu, Fang</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Applications of Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yu, Yanghai</au><au>Liu, Fang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ill-posedness for the Navier-Stokes and Euler equations in Besov spaces</atitle><jtitle>Applications of Mathematics</jtitle><stitle>Appl Math</stitle><date>2024-12-01</date><risdate>2024</risdate><volume>69</volume><issue>6</issue><spage>757</spage><epage>767</epage><pages>757-767</pages><issn>0862-7940</issn><eissn>1572-9109</eissn><abstract>We construct a new initial data to prove the ill-posedness of both Navier-Stokes and Euler equations in weaker Besov spaces in the sense that the solution maps to these equations starting from
u
0
are discontinuous at
t
= 0.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.21136/AM.2024.0089-24</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0862-7940 |
ispartof | Applications of Mathematics, 2024-12, Vol.69 (6), p.757-767 |
issn | 0862-7940 1572-9109 |
language | eng |
recordid | cdi_proquest_journals_3147078903 |
source | SpringerLink Journals - AutoHoldings |
subjects | Analysis Applications of Mathematics Classical and Continuum Physics Euler-Lagrange equation Fluid flow Function space Ill posed problems Mathematical and Computational Engineering Mathematical and Computational Physics Mathematics Mathematics and Statistics Navier-Stokes equations Optimization Theoretical |
title | Ill-posedness for the Navier-Stokes and Euler equations in Besov spaces |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T00%3A58%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ill-posedness%20for%20the%20Navier-Stokes%20and%20Euler%20equations%20in%20Besov%20spaces&rft.jtitle=Applications%20of%20Mathematics&rft.au=Yu,%20Yanghai&rft.date=2024-12-01&rft.volume=69&rft.issue=6&rft.spage=757&rft.epage=767&rft.pages=757-767&rft.issn=0862-7940&rft.eissn=1572-9109&rft_id=info:doi/10.21136/AM.2024.0089-24&rft_dat=%3Cproquest_cross%3E3147078903%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3147078903&rft_id=info:pmid/&rfr_iscdi=true |