Hexagonal and Trigonal Quasiperiodic Tilings
Exploring nonminimal‐rank quasicrystals, which have symmetries that can be found in both periodic and aperiodic crystals, often provides new insight into the physical nature of aperiodic long‐range order in models that are easier to treat. Motivated by the prevalence of experimental systems exhibiti...
Gespeichert in:
Veröffentlicht in: | Israel journal of chemistry 2024-11, Vol.64 (10-11), p.n/a |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 10-11 |
container_start_page | |
container_title | Israel journal of chemistry |
container_volume | 64 |
creator | Coates, Sam Koga, Akihisa Matsubara, Toranosuke Tamura, Ryuji Sharma, Hem Raj McGrath, Ronan Lifshitz, Ron |
description | Exploring nonminimal‐rank quasicrystals, which have symmetries that can be found in both periodic and aperiodic crystals, often provides new insight into the physical nature of aperiodic long‐range order in models that are easier to treat. Motivated by the prevalence of experimental systems exhibiting aperiodic long‐range order with hexagonal and trigonal symmetry, we introduce a generic two‐parameter family of 2‐dimensional quasiperiodic tilings with such symmetries. We focus on the special case of trigonal and hexagonal Fibonacci, or golden‐mean, tilings, analogous to the well studied square Fibonacci tiling. We first generate the tilings using a generalized version of de Bruijn's dual grid method. We then discuss their interpretation in terms of projections of a hypercubic lattice from six dimensional superspace. We conclude by concentrating on two of the hexagonal members of the family, and examining a few of their properties more closely, while providing a set of substitution rules for their generation. |
doi_str_mv | 10.1002/ijch.202300100 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3146990439</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3146990439</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2420-6eb83ce721319d3e62114b542af369d81c5515525bf5c8a532c2fcefc5e706383</originalsourceid><addsrcrecordid>eNqFkMFLwzAUxoMoOKdXzwWvtr6XNFlylKJuMhChnkOapjOjrjWx6P57Oyp69PT44Pf7eHyEXCJkCEBv_Na-ZhQoAxjzEZmhFCrlUshjMhsBTCnm8pScxbgFAAVKzcj10n2ZTbczbWJ2dVIGP4XnwUTfu-C72tuk9K3fbeI5OWlMG93Fz52Tl_u7slim66eHVXG7Ti3NKaTCVZJZt6DIUNXMCYqYVzynpmFC1RIt58g55VXDrTScUUsb6xrL3QIEk2xOrqbePnTvg4sfetsNYXwraoa5UApypkYqmygbuhiDa3Qf_JsJe42gD4vowyL6d5FRUJPw6Vu3_4fWq8di-ed-A_ENYtI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3146990439</pqid></control><display><type>article</type><title>Hexagonal and Trigonal Quasiperiodic Tilings</title><source>Wiley Journals</source><creator>Coates, Sam ; Koga, Akihisa ; Matsubara, Toranosuke ; Tamura, Ryuji ; Sharma, Hem Raj ; McGrath, Ronan ; Lifshitz, Ron</creator><creatorcontrib>Coates, Sam ; Koga, Akihisa ; Matsubara, Toranosuke ; Tamura, Ryuji ; Sharma, Hem Raj ; McGrath, Ronan ; Lifshitz, Ron</creatorcontrib><description>Exploring nonminimal‐rank quasicrystals, which have symmetries that can be found in both periodic and aperiodic crystals, often provides new insight into the physical nature of aperiodic long‐range order in models that are easier to treat. Motivated by the prevalence of experimental systems exhibiting aperiodic long‐range order with hexagonal and trigonal symmetry, we introduce a generic two‐parameter family of 2‐dimensional quasiperiodic tilings with such symmetries. We focus on the special case of trigonal and hexagonal Fibonacci, or golden‐mean, tilings, analogous to the well studied square Fibonacci tiling. We first generate the tilings using a generalized version of de Bruijn's dual grid method. We then discuss their interpretation in terms of projections of a hypercubic lattice from six dimensional superspace. We conclude by concentrating on two of the hexagonal members of the family, and examining a few of their properties more closely, while providing a set of substitution rules for their generation.</description><identifier>ISSN: 0021-2148</identifier><identifier>EISSN: 1869-5868</identifier><identifier>DOI: 10.1002/ijch.202300100</identifier><language>eng</language><publisher>Haifa: Wiley Subscription Services, Inc</publisher><subject>Grid method ; Tiling</subject><ispartof>Israel journal of chemistry, 2024-11, Vol.64 (10-11), p.n/a</ispartof><rights>2024 The Authors. Israel Journal of Chemistry published by Wiley-VCH GmbH</rights><rights>2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2420-6eb83ce721319d3e62114b542af369d81c5515525bf5c8a532c2fcefc5e706383</cites><orcidid>0000-0002-8408-1703</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fijch.202300100$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fijch.202300100$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Coates, Sam</creatorcontrib><creatorcontrib>Koga, Akihisa</creatorcontrib><creatorcontrib>Matsubara, Toranosuke</creatorcontrib><creatorcontrib>Tamura, Ryuji</creatorcontrib><creatorcontrib>Sharma, Hem Raj</creatorcontrib><creatorcontrib>McGrath, Ronan</creatorcontrib><creatorcontrib>Lifshitz, Ron</creatorcontrib><title>Hexagonal and Trigonal Quasiperiodic Tilings</title><title>Israel journal of chemistry</title><description>Exploring nonminimal‐rank quasicrystals, which have symmetries that can be found in both periodic and aperiodic crystals, often provides new insight into the physical nature of aperiodic long‐range order in models that are easier to treat. Motivated by the prevalence of experimental systems exhibiting aperiodic long‐range order with hexagonal and trigonal symmetry, we introduce a generic two‐parameter family of 2‐dimensional quasiperiodic tilings with such symmetries. We focus on the special case of trigonal and hexagonal Fibonacci, or golden‐mean, tilings, analogous to the well studied square Fibonacci tiling. We first generate the tilings using a generalized version of de Bruijn's dual grid method. We then discuss their interpretation in terms of projections of a hypercubic lattice from six dimensional superspace. We conclude by concentrating on two of the hexagonal members of the family, and examining a few of their properties more closely, while providing a set of substitution rules for their generation.</description><subject>Grid method</subject><subject>Tiling</subject><issn>0021-2148</issn><issn>1869-5868</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNqFkMFLwzAUxoMoOKdXzwWvtr6XNFlylKJuMhChnkOapjOjrjWx6P57Oyp69PT44Pf7eHyEXCJkCEBv_Na-ZhQoAxjzEZmhFCrlUshjMhsBTCnm8pScxbgFAAVKzcj10n2ZTbczbWJ2dVIGP4XnwUTfu-C72tuk9K3fbeI5OWlMG93Fz52Tl_u7slim66eHVXG7Ti3NKaTCVZJZt6DIUNXMCYqYVzynpmFC1RIt58g55VXDrTScUUsb6xrL3QIEk2xOrqbePnTvg4sfetsNYXwraoa5UApypkYqmygbuhiDa3Qf_JsJe42gD4vowyL6d5FRUJPw6Vu3_4fWq8di-ed-A_ENYtI</recordid><startdate>202411</startdate><enddate>202411</enddate><creator>Coates, Sam</creator><creator>Koga, Akihisa</creator><creator>Matsubara, Toranosuke</creator><creator>Tamura, Ryuji</creator><creator>Sharma, Hem Raj</creator><creator>McGrath, Ronan</creator><creator>Lifshitz, Ron</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-8408-1703</orcidid></search><sort><creationdate>202411</creationdate><title>Hexagonal and Trigonal Quasiperiodic Tilings</title><author>Coates, Sam ; Koga, Akihisa ; Matsubara, Toranosuke ; Tamura, Ryuji ; Sharma, Hem Raj ; McGrath, Ronan ; Lifshitz, Ron</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2420-6eb83ce721319d3e62114b542af369d81c5515525bf5c8a532c2fcefc5e706383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Grid method</topic><topic>Tiling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Coates, Sam</creatorcontrib><creatorcontrib>Koga, Akihisa</creatorcontrib><creatorcontrib>Matsubara, Toranosuke</creatorcontrib><creatorcontrib>Tamura, Ryuji</creatorcontrib><creatorcontrib>Sharma, Hem Raj</creatorcontrib><creatorcontrib>McGrath, Ronan</creatorcontrib><creatorcontrib>Lifshitz, Ron</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Online Library (Open Access Collection)</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Israel journal of chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Coates, Sam</au><au>Koga, Akihisa</au><au>Matsubara, Toranosuke</au><au>Tamura, Ryuji</au><au>Sharma, Hem Raj</au><au>McGrath, Ronan</au><au>Lifshitz, Ron</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hexagonal and Trigonal Quasiperiodic Tilings</atitle><jtitle>Israel journal of chemistry</jtitle><date>2024-11</date><risdate>2024</risdate><volume>64</volume><issue>10-11</issue><epage>n/a</epage><issn>0021-2148</issn><eissn>1869-5868</eissn><abstract>Exploring nonminimal‐rank quasicrystals, which have symmetries that can be found in both periodic and aperiodic crystals, often provides new insight into the physical nature of aperiodic long‐range order in models that are easier to treat. Motivated by the prevalence of experimental systems exhibiting aperiodic long‐range order with hexagonal and trigonal symmetry, we introduce a generic two‐parameter family of 2‐dimensional quasiperiodic tilings with such symmetries. We focus on the special case of trigonal and hexagonal Fibonacci, or golden‐mean, tilings, analogous to the well studied square Fibonacci tiling. We first generate the tilings using a generalized version of de Bruijn's dual grid method. We then discuss their interpretation in terms of projections of a hypercubic lattice from six dimensional superspace. We conclude by concentrating on two of the hexagonal members of the family, and examining a few of their properties more closely, while providing a set of substitution rules for their generation.</abstract><cop>Haifa</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/ijch.202300100</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-8408-1703</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-2148 |
ispartof | Israel journal of chemistry, 2024-11, Vol.64 (10-11), p.n/a |
issn | 0021-2148 1869-5868 |
language | eng |
recordid | cdi_proquest_journals_3146990439 |
source | Wiley Journals |
subjects | Grid method Tiling |
title | Hexagonal and Trigonal Quasiperiodic Tilings |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T07%3A19%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hexagonal%20and%20Trigonal%20Quasiperiodic%20Tilings&rft.jtitle=Israel%20journal%20of%20chemistry&rft.au=Coates,%20Sam&rft.date=2024-11&rft.volume=64&rft.issue=10-11&rft.epage=n/a&rft.issn=0021-2148&rft.eissn=1869-5868&rft_id=info:doi/10.1002/ijch.202300100&rft_dat=%3Cproquest_cross%3E3146990439%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3146990439&rft_id=info:pmid/&rfr_iscdi=true |