Simulating waves induced by landslide using coupled smoothed particle hydrodynamics and discrete element method: Evaluating the impact of irregular rock shapes
The morphology of rock plays an important role in the process of landslide-induced wave, yet it is often neglected in current studies. This work aims to fill this gap by investigating the impact of irregular rock shapes on landslide-induced wave generation and propagation via coupling smooth particl...
Gespeichert in:
Veröffentlicht in: | Physics of fluids (1994) 2024-12, Vol.36 (12) |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 12 |
container_start_page | |
container_title | Physics of fluids (1994) |
container_volume | 36 |
creator | Govender, Nicolin Martínez-Estévez, Iván Domínguez, José M. Crespo, Alejandro J. C. |
description | The morphology of rock plays an important role in the process of landslide-induced wave, yet it is often neglected in current studies. This work aims to fill this gap by investigating the impact of irregular rock shapes on landslide-induced wave generation and propagation via coupling smooth particle fluid dynamics and discrete element method from a multi-scale perspective. Initially, the wave induced by particle column collapse is reproduced and validated against existing results. Subsequently, the influence of rock shapes, particularly the aspect ratio of particles on landslide-induced waves, is analyzed. The findings indicate that spherical particles, due to their low self-locking tendency and simple force chain structure, exhibit higher average velocities and more stable velocity changes during the landslide process. Spherical particles generate larger free surface waves with smoother and more regular waveforms when entering the water. In contrast, irregular polyhedral particles produce multiple secondary wave peaks alongside the main wave. The wave height induced by these particles is negatively correlated with aspect ratio. Specifically, the maximum run-up height of waves generated by elliptical particles with the highest aspect ratio is 11.7% lower than that of spherical particles. This research highlights the influence mechanism of particle morphology on landslide and tsunami dynamics, which provides a theoretical foundation for disaster prediction and assessment. |
doi_str_mv | 10.1063/5.0243884 |
format | Article |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_3146587295</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3146587295</sourcerecordid><originalsourceid>FETCH-LOGICAL-c182t-c4f5f3d283ffc23a8e0ac5f3bad127606c91925b437cfc8ff1696c050cdfacf93</originalsourceid><addsrcrecordid>eNp9kM9OwzAMxisEEmNw4A0icQKpI2natOWGpvFHmsQBOFeZk6wZbVOSdKhPw6uSqTtzsmX__Nn-ouia4AXBjN5nC5yktCjSk2hGcFHGOWPs9JDnOGaMkvPowrkdxpiWCZtFv--6HRrudbdFP3wvHdKdGEAKtBlRwzvhGi0kGtwBADP0TWi51hhfh6Tn1mtoJKpHYY0YO95qcCiMIaEdWOklko1sZedRK31txANa7XkzTAuDBtJtz8Ejo5C2Vm7DLRZZA1_I1byX7jI6U7xx8uoY59Hn0-pj-RKv355fl4_rGEiR-BhSlSkqkoIqBQnlhcQcQmXDBUlyhhmUpEyyTUpzUFAoRVjJAGcYhOKgSjqPbibd3prvQTpf7cxgu7CyoiRlWZEnZRao24kCa5yzUlW91S23Y0VwdfC_yqqj_4G9m1gH2od_TfcP_Acixomy</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3146587295</pqid></control><display><type>article</type><title>Simulating waves induced by landslide using coupled smoothed particle hydrodynamics and discrete element method: Evaluating the impact of irregular rock shapes</title><source>AIP Journals Complete</source><creator>Govender, Nicolin ; Martínez-Estévez, Iván ; Domínguez, José M. ; Crespo, Alejandro J. C.</creator><creatorcontrib>Govender, Nicolin ; Martínez-Estévez, Iván ; Domínguez, José M. ; Crespo, Alejandro J. C.</creatorcontrib><description>The morphology of rock plays an important role in the process of landslide-induced wave, yet it is often neglected in current studies. This work aims to fill this gap by investigating the impact of irregular rock shapes on landslide-induced wave generation and propagation via coupling smooth particle fluid dynamics and discrete element method from a multi-scale perspective. Initially, the wave induced by particle column collapse is reproduced and validated against existing results. Subsequently, the influence of rock shapes, particularly the aspect ratio of particles on landslide-induced waves, is analyzed. The findings indicate that spherical particles, due to their low self-locking tendency and simple force chain structure, exhibit higher average velocities and more stable velocity changes during the landslide process. Spherical particles generate larger free surface waves with smoother and more regular waveforms when entering the water. In contrast, irregular polyhedral particles produce multiple secondary wave peaks alongside the main wave. The wave height induced by these particles is negatively correlated with aspect ratio. Specifically, the maximum run-up height of waves generated by elliptical particles with the highest aspect ratio is 11.7% lower than that of spherical particles. This research highlights the influence mechanism of particle morphology on landslide and tsunami dynamics, which provides a theoretical foundation for disaster prediction and assessment.</description><identifier>ISSN: 1070-6631</identifier><identifier>EISSN: 1089-7666</identifier><identifier>DOI: 10.1063/5.0243884</identifier><identifier>CODEN: PHFLE6</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Aspect ratio ; Columnar structure ; Discrete element method ; Dynamic structural analysis ; Fluid dynamics ; Free surfaces ; Landslides ; Morphology ; Smooth particle hydrodynamics ; Spherical waves ; Surface waves ; Wave generation ; Wave height ; Wave propagation ; Waveforms</subject><ispartof>Physics of fluids (1994), 2024-12, Vol.36 (12)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c182t-c4f5f3d283ffc23a8e0ac5f3bad127606c91925b437cfc8ff1696c050cdfacf93</cites><orcidid>0000-0003-1669-3844 ; 0000-0003-4604-3631 ; 0000-0001-5870-8296 ; 0009-0000-2007-0573 ; 0000-0002-2586-5081</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,792,4500,27907,27908</link.rule.ids></links><search><creatorcontrib>Govender, Nicolin</creatorcontrib><creatorcontrib>Martínez-Estévez, Iván</creatorcontrib><creatorcontrib>Domínguez, José M.</creatorcontrib><creatorcontrib>Crespo, Alejandro J. C.</creatorcontrib><title>Simulating waves induced by landslide using coupled smoothed particle hydrodynamics and discrete element method: Evaluating the impact of irregular rock shapes</title><title>Physics of fluids (1994)</title><description>The morphology of rock plays an important role in the process of landslide-induced wave, yet it is often neglected in current studies. This work aims to fill this gap by investigating the impact of irregular rock shapes on landslide-induced wave generation and propagation via coupling smooth particle fluid dynamics and discrete element method from a multi-scale perspective. Initially, the wave induced by particle column collapse is reproduced and validated against existing results. Subsequently, the influence of rock shapes, particularly the aspect ratio of particles on landslide-induced waves, is analyzed. The findings indicate that spherical particles, due to their low self-locking tendency and simple force chain structure, exhibit higher average velocities and more stable velocity changes during the landslide process. Spherical particles generate larger free surface waves with smoother and more regular waveforms when entering the water. In contrast, irregular polyhedral particles produce multiple secondary wave peaks alongside the main wave. The wave height induced by these particles is negatively correlated with aspect ratio. Specifically, the maximum run-up height of waves generated by elliptical particles with the highest aspect ratio is 11.7% lower than that of spherical particles. This research highlights the influence mechanism of particle morphology on landslide and tsunami dynamics, which provides a theoretical foundation for disaster prediction and assessment.</description><subject>Aspect ratio</subject><subject>Columnar structure</subject><subject>Discrete element method</subject><subject>Dynamic structural analysis</subject><subject>Fluid dynamics</subject><subject>Free surfaces</subject><subject>Landslides</subject><subject>Morphology</subject><subject>Smooth particle hydrodynamics</subject><subject>Spherical waves</subject><subject>Surface waves</subject><subject>Wave generation</subject><subject>Wave height</subject><subject>Wave propagation</subject><subject>Waveforms</subject><issn>1070-6631</issn><issn>1089-7666</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kM9OwzAMxisEEmNw4A0icQKpI2natOWGpvFHmsQBOFeZk6wZbVOSdKhPw6uSqTtzsmX__Nn-ouia4AXBjN5nC5yktCjSk2hGcFHGOWPs9JDnOGaMkvPowrkdxpiWCZtFv--6HRrudbdFP3wvHdKdGEAKtBlRwzvhGi0kGtwBADP0TWi51hhfh6Tn1mtoJKpHYY0YO95qcCiMIaEdWOklko1sZedRK31txANa7XkzTAuDBtJtz8Ejo5C2Vm7DLRZZA1_I1byX7jI6U7xx8uoY59Hn0-pj-RKv355fl4_rGEiR-BhSlSkqkoIqBQnlhcQcQmXDBUlyhhmUpEyyTUpzUFAoRVjJAGcYhOKgSjqPbibd3prvQTpf7cxgu7CyoiRlWZEnZRao24kCa5yzUlW91S23Y0VwdfC_yqqj_4G9m1gH2od_TfcP_Acixomy</recordid><startdate>202412</startdate><enddate>202412</enddate><creator>Govender, Nicolin</creator><creator>Martínez-Estévez, Iván</creator><creator>Domínguez, José M.</creator><creator>Crespo, Alejandro J. C.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-1669-3844</orcidid><orcidid>https://orcid.org/0000-0003-4604-3631</orcidid><orcidid>https://orcid.org/0000-0001-5870-8296</orcidid><orcidid>https://orcid.org/0009-0000-2007-0573</orcidid><orcidid>https://orcid.org/0000-0002-2586-5081</orcidid></search><sort><creationdate>202412</creationdate><title>Simulating waves induced by landslide using coupled smoothed particle hydrodynamics and discrete element method: Evaluating the impact of irregular rock shapes</title><author>Govender, Nicolin ; Martínez-Estévez, Iván ; Domínguez, José M. ; Crespo, Alejandro J. C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c182t-c4f5f3d283ffc23a8e0ac5f3bad127606c91925b437cfc8ff1696c050cdfacf93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Aspect ratio</topic><topic>Columnar structure</topic><topic>Discrete element method</topic><topic>Dynamic structural analysis</topic><topic>Fluid dynamics</topic><topic>Free surfaces</topic><topic>Landslides</topic><topic>Morphology</topic><topic>Smooth particle hydrodynamics</topic><topic>Spherical waves</topic><topic>Surface waves</topic><topic>Wave generation</topic><topic>Wave height</topic><topic>Wave propagation</topic><topic>Waveforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Govender, Nicolin</creatorcontrib><creatorcontrib>Martínez-Estévez, Iván</creatorcontrib><creatorcontrib>Domínguez, José M.</creatorcontrib><creatorcontrib>Crespo, Alejandro J. C.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physics of fluids (1994)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Govender, Nicolin</au><au>Martínez-Estévez, Iván</au><au>Domínguez, José M.</au><au>Crespo, Alejandro J. C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simulating waves induced by landslide using coupled smoothed particle hydrodynamics and discrete element method: Evaluating the impact of irregular rock shapes</atitle><jtitle>Physics of fluids (1994)</jtitle><date>2024-12</date><risdate>2024</risdate><volume>36</volume><issue>12</issue><issn>1070-6631</issn><eissn>1089-7666</eissn><coden>PHFLE6</coden><abstract>The morphology of rock plays an important role in the process of landslide-induced wave, yet it is often neglected in current studies. This work aims to fill this gap by investigating the impact of irregular rock shapes on landslide-induced wave generation and propagation via coupling smooth particle fluid dynamics and discrete element method from a multi-scale perspective. Initially, the wave induced by particle column collapse is reproduced and validated against existing results. Subsequently, the influence of rock shapes, particularly the aspect ratio of particles on landslide-induced waves, is analyzed. The findings indicate that spherical particles, due to their low self-locking tendency and simple force chain structure, exhibit higher average velocities and more stable velocity changes during the landslide process. Spherical particles generate larger free surface waves with smoother and more regular waveforms when entering the water. In contrast, irregular polyhedral particles produce multiple secondary wave peaks alongside the main wave. The wave height induced by these particles is negatively correlated with aspect ratio. Specifically, the maximum run-up height of waves generated by elliptical particles with the highest aspect ratio is 11.7% lower than that of spherical particles. This research highlights the influence mechanism of particle morphology on landslide and tsunami dynamics, which provides a theoretical foundation for disaster prediction and assessment.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0243884</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0003-1669-3844</orcidid><orcidid>https://orcid.org/0000-0003-4604-3631</orcidid><orcidid>https://orcid.org/0000-0001-5870-8296</orcidid><orcidid>https://orcid.org/0009-0000-2007-0573</orcidid><orcidid>https://orcid.org/0000-0002-2586-5081</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1070-6631 |
ispartof | Physics of fluids (1994), 2024-12, Vol.36 (12) |
issn | 1070-6631 1089-7666 |
language | eng |
recordid | cdi_proquest_journals_3146587295 |
source | AIP Journals Complete |
subjects | Aspect ratio Columnar structure Discrete element method Dynamic structural analysis Fluid dynamics Free surfaces Landslides Morphology Smooth particle hydrodynamics Spherical waves Surface waves Wave generation Wave height Wave propagation Waveforms |
title | Simulating waves induced by landslide using coupled smoothed particle hydrodynamics and discrete element method: Evaluating the impact of irregular rock shapes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T22%3A37%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simulating%20waves%20induced%20by%20landslide%20using%20coupled%20smoothed%20particle%20hydrodynamics%20and%20discrete%20element%20method:%20Evaluating%20the%20impact%20of%20irregular%20rock%20shapes&rft.jtitle=Physics%20of%20fluids%20(1994)&rft.au=Govender,%20Nicolin&rft.date=2024-12&rft.volume=36&rft.issue=12&rft.issn=1070-6631&rft.eissn=1089-7666&rft.coden=PHFLE6&rft_id=info:doi/10.1063/5.0243884&rft_dat=%3Cproquest_scita%3E3146587295%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3146587295&rft_id=info:pmid/&rfr_iscdi=true |