Statistical QoS Provisioning for URLLC in Cell-Free Massive MIMO Systems
Cell-free (CF) massive multiple-input multiple-output (mMIMO), characterized by macro-diversity and spatial sparsity, has been considered as a potential technology to support ultra-reliable low-latency communication (URLLC). The average performance has been comprehensively investigated for URLLC in...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on communications 2024-12, Vol.72 (12), p.7650-7663 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7663 |
---|---|
container_issue | 12 |
container_start_page | 7650 |
container_title | IEEE transactions on communications |
container_volume | 72 |
creator | Chong, Baolin Lu, Hancheng |
description | Cell-free (CF) massive multiple-input multiple-output (mMIMO), characterized by macro-diversity and spatial sparsity, has been considered as a potential technology to support ultra-reliable low-latency communication (URLLC). The average performance has been comprehensively investigated for URLLC in CF mMIMO systems. However, URLLC places its central focus on extreme and rare events, requiring statistical quality of service (QoS) provisioning in CF mMIMO systems. In this paper, we model the statistical QoS provisioning constraints for URLLC in a CF mMIMO system based on extreme value theory (EVT), i.e., delay violation probability boundary and statistical properties of extreme queue values. Based on our analytical work, a power control optimization problem with long-term URLLC constraints is formulated, aiming at minimizing energy consumption. Then, Lyapunov optimization is utilized to decompose this long-term stochastic optimization problem into a series of short-term deterministic problems. Since the short-term problems are non-convex and intractable, a learning-based hyper-heuristic algorithm, consisting of a high-level strategy and multiple low-level heuristics, is proposed. Numerical results verify the effectiveness of parameterizing URLLC in the CF mMIMO system based on EVT and demonstrate that the proposed algorithm outperforms benchmark algorithms in both average delay and delay fluctuations, achieving statistical QoS provisioning. |
doi_str_mv | 10.1109/TCOMM.2024.3420808 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_3146577496</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10583910</ieee_id><sourcerecordid>3146577496</sourcerecordid><originalsourceid>FETCH-LOGICAL-c926-cd0233bad515de59f6e0459d1077a640ced042c0f867911f18a61e41411de0383</originalsourceid><addsrcrecordid>eNpNkM1Kw0AYRQdRsFZfQFwMuE79JvO_lGBtIaFq63oYk4lMSZM6kxb69qa2C1d3c8-9cBC6JzAhBPTTKlsUxSSFlE0oS0GBukAjwrlKQHF5iUYAGhIhpbpGNzGuAYABpSM0W_a297H3pW3we7fEb6Hb--i71rffuO4C_vzI8wz7FmeuaZJpcA4XNka_H3JeLPDyEHu3ibfoqrZNdHfnHKPV9GWVzZJ88TrPnvOk1KlIygpSSr9sxQmvHNe1cMC4rghIaQWD0lXA0hJqJaQmpCbKCuIYYYRUDqiiY_R4mt2G7mfnYm_W3S60w6OhhAkuJdNiaKWnVhm6GIOrzTb4jQ0HQ8AchZk_YeYozJyFDdDDCfLOuX8AV1QToL9Y5WTQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3146577496</pqid></control><display><type>article</type><title>Statistical QoS Provisioning for URLLC in Cell-Free Massive MIMO Systems</title><source>IEEE Electronic Library (IEL)</source><creator>Chong, Baolin ; Lu, Hancheng</creator><creatorcontrib>Chong, Baolin ; Lu, Hancheng</creatorcontrib><description>Cell-free (CF) massive multiple-input multiple-output (mMIMO), characterized by macro-diversity and spatial sparsity, has been considered as a potential technology to support ultra-reliable low-latency communication (URLLC). The average performance has been comprehensively investigated for URLLC in CF mMIMO systems. However, URLLC places its central focus on extreme and rare events, requiring statistical quality of service (QoS) provisioning in CF mMIMO systems. In this paper, we model the statistical QoS provisioning constraints for URLLC in a CF mMIMO system based on extreme value theory (EVT), i.e., delay violation probability boundary and statistical properties of extreme queue values. Based on our analytical work, a power control optimization problem with long-term URLLC constraints is formulated, aiming at minimizing energy consumption. Then, Lyapunov optimization is utilized to decompose this long-term stochastic optimization problem into a series of short-term deterministic problems. Since the short-term problems are non-convex and intractable, a learning-based hyper-heuristic algorithm, consisting of a high-level strategy and multiple low-level heuristics, is proposed. Numerical results verify the effectiveness of parameterizing URLLC in the CF mMIMO system based on EVT and demonstrate that the proposed algorithm outperforms benchmark algorithms in both average delay and delay fluctuations, achieving statistical QoS provisioning.</description><identifier>ISSN: 0090-6778</identifier><identifier>EISSN: 1558-0857</identifier><identifier>DOI: 10.1109/TCOMM.2024.3420808</identifier><identifier>CODEN: IECMBT</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Boundary value problems ; Cell-free massive multiple-input multiple-output ; Channel estimation ; Constraints ; Delay ; Delays ; Energy consumption ; Extreme value theory ; Extreme values ; Heuristic methods ; hyper-heuristic ; Lyapunov optimization ; Machine learning ; multi-armed bandit ; Optimization ; Power control ; Provisioning ; Quality of service ; Statistical analysis ; statistical QoS provisioning ; Stochastic processes ; Ultra reliable low latency communication</subject><ispartof>IEEE transactions on communications, 2024-12, Vol.72 (12), p.7650-7663</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c926-cd0233bad515de59f6e0459d1077a640ced042c0f867911f18a61e41411de0383</cites><orcidid>0009-0000-2562-3966 ; 0000-0001-8302-4996</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10583910$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10583910$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Chong, Baolin</creatorcontrib><creatorcontrib>Lu, Hancheng</creatorcontrib><title>Statistical QoS Provisioning for URLLC in Cell-Free Massive MIMO Systems</title><title>IEEE transactions on communications</title><addtitle>TCOMM</addtitle><description>Cell-free (CF) massive multiple-input multiple-output (mMIMO), characterized by macro-diversity and spatial sparsity, has been considered as a potential technology to support ultra-reliable low-latency communication (URLLC). The average performance has been comprehensively investigated for URLLC in CF mMIMO systems. However, URLLC places its central focus on extreme and rare events, requiring statistical quality of service (QoS) provisioning in CF mMIMO systems. In this paper, we model the statistical QoS provisioning constraints for URLLC in a CF mMIMO system based on extreme value theory (EVT), i.e., delay violation probability boundary and statistical properties of extreme queue values. Based on our analytical work, a power control optimization problem with long-term URLLC constraints is formulated, aiming at minimizing energy consumption. Then, Lyapunov optimization is utilized to decompose this long-term stochastic optimization problem into a series of short-term deterministic problems. Since the short-term problems are non-convex and intractable, a learning-based hyper-heuristic algorithm, consisting of a high-level strategy and multiple low-level heuristics, is proposed. Numerical results verify the effectiveness of parameterizing URLLC in the CF mMIMO system based on EVT and demonstrate that the proposed algorithm outperforms benchmark algorithms in both average delay and delay fluctuations, achieving statistical QoS provisioning.</description><subject>Algorithms</subject><subject>Boundary value problems</subject><subject>Cell-free massive multiple-input multiple-output</subject><subject>Channel estimation</subject><subject>Constraints</subject><subject>Delay</subject><subject>Delays</subject><subject>Energy consumption</subject><subject>Extreme value theory</subject><subject>Extreme values</subject><subject>Heuristic methods</subject><subject>hyper-heuristic</subject><subject>Lyapunov optimization</subject><subject>Machine learning</subject><subject>multi-armed bandit</subject><subject>Optimization</subject><subject>Power control</subject><subject>Provisioning</subject><subject>Quality of service</subject><subject>Statistical analysis</subject><subject>statistical QoS provisioning</subject><subject>Stochastic processes</subject><subject>Ultra reliable low latency communication</subject><issn>0090-6778</issn><issn>1558-0857</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkM1Kw0AYRQdRsFZfQFwMuE79JvO_lGBtIaFq63oYk4lMSZM6kxb69qa2C1d3c8-9cBC6JzAhBPTTKlsUxSSFlE0oS0GBukAjwrlKQHF5iUYAGhIhpbpGNzGuAYABpSM0W_a297H3pW3we7fEb6Hb--i71rffuO4C_vzI8wz7FmeuaZJpcA4XNka_H3JeLPDyEHu3ibfoqrZNdHfnHKPV9GWVzZJ88TrPnvOk1KlIygpSSr9sxQmvHNe1cMC4rghIaQWD0lXA0hJqJaQmpCbKCuIYYYRUDqiiY_R4mt2G7mfnYm_W3S60w6OhhAkuJdNiaKWnVhm6GIOrzTb4jQ0HQ8AchZk_YeYozJyFDdDDCfLOuX8AV1QToL9Y5WTQ</recordid><startdate>202412</startdate><enddate>202412</enddate><creator>Chong, Baolin</creator><creator>Lu, Hancheng</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0009-0000-2562-3966</orcidid><orcidid>https://orcid.org/0000-0001-8302-4996</orcidid></search><sort><creationdate>202412</creationdate><title>Statistical QoS Provisioning for URLLC in Cell-Free Massive MIMO Systems</title><author>Chong, Baolin ; Lu, Hancheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c926-cd0233bad515de59f6e0459d1077a640ced042c0f867911f18a61e41411de0383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Boundary value problems</topic><topic>Cell-free massive multiple-input multiple-output</topic><topic>Channel estimation</topic><topic>Constraints</topic><topic>Delay</topic><topic>Delays</topic><topic>Energy consumption</topic><topic>Extreme value theory</topic><topic>Extreme values</topic><topic>Heuristic methods</topic><topic>hyper-heuristic</topic><topic>Lyapunov optimization</topic><topic>Machine learning</topic><topic>multi-armed bandit</topic><topic>Optimization</topic><topic>Power control</topic><topic>Provisioning</topic><topic>Quality of service</topic><topic>Statistical analysis</topic><topic>statistical QoS provisioning</topic><topic>Stochastic processes</topic><topic>Ultra reliable low latency communication</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chong, Baolin</creatorcontrib><creatorcontrib>Lu, Hancheng</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chong, Baolin</au><au>Lu, Hancheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Statistical QoS Provisioning for URLLC in Cell-Free Massive MIMO Systems</atitle><jtitle>IEEE transactions on communications</jtitle><stitle>TCOMM</stitle><date>2024-12</date><risdate>2024</risdate><volume>72</volume><issue>12</issue><spage>7650</spage><epage>7663</epage><pages>7650-7663</pages><issn>0090-6778</issn><eissn>1558-0857</eissn><coden>IECMBT</coden><abstract>Cell-free (CF) massive multiple-input multiple-output (mMIMO), characterized by macro-diversity and spatial sparsity, has been considered as a potential technology to support ultra-reliable low-latency communication (URLLC). The average performance has been comprehensively investigated for URLLC in CF mMIMO systems. However, URLLC places its central focus on extreme and rare events, requiring statistical quality of service (QoS) provisioning in CF mMIMO systems. In this paper, we model the statistical QoS provisioning constraints for URLLC in a CF mMIMO system based on extreme value theory (EVT), i.e., delay violation probability boundary and statistical properties of extreme queue values. Based on our analytical work, a power control optimization problem with long-term URLLC constraints is formulated, aiming at minimizing energy consumption. Then, Lyapunov optimization is utilized to decompose this long-term stochastic optimization problem into a series of short-term deterministic problems. Since the short-term problems are non-convex and intractable, a learning-based hyper-heuristic algorithm, consisting of a high-level strategy and multiple low-level heuristics, is proposed. Numerical results verify the effectiveness of parameterizing URLLC in the CF mMIMO system based on EVT and demonstrate that the proposed algorithm outperforms benchmark algorithms in both average delay and delay fluctuations, achieving statistical QoS provisioning.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCOMM.2024.3420808</doi><tpages>14</tpages><orcidid>https://orcid.org/0009-0000-2562-3966</orcidid><orcidid>https://orcid.org/0000-0001-8302-4996</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0090-6778 |
ispartof | IEEE transactions on communications, 2024-12, Vol.72 (12), p.7650-7663 |
issn | 0090-6778 1558-0857 |
language | eng |
recordid | cdi_proquest_journals_3146577496 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Boundary value problems Cell-free massive multiple-input multiple-output Channel estimation Constraints Delay Delays Energy consumption Extreme value theory Extreme values Heuristic methods hyper-heuristic Lyapunov optimization Machine learning multi-armed bandit Optimization Power control Provisioning Quality of service Statistical analysis statistical QoS provisioning Stochastic processes Ultra reliable low latency communication |
title | Statistical QoS Provisioning for URLLC in Cell-Free Massive MIMO Systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T09%3A51%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Statistical%20QoS%20Provisioning%20for%20URLLC%20in%20Cell-Free%20Massive%20MIMO%20Systems&rft.jtitle=IEEE%20transactions%20on%20communications&rft.au=Chong,%20Baolin&rft.date=2024-12&rft.volume=72&rft.issue=12&rft.spage=7650&rft.epage=7663&rft.pages=7650-7663&rft.issn=0090-6778&rft.eissn=1558-0857&rft.coden=IECMBT&rft_id=info:doi/10.1109/TCOMM.2024.3420808&rft_dat=%3Cproquest_RIE%3E3146577496%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3146577496&rft_id=info:pmid/&rft_ieee_id=10583910&rfr_iscdi=true |