Statistical QoS Provisioning for URLLC in Cell-Free Massive MIMO Systems

Cell-free (CF) massive multiple-input multiple-output (mMIMO), characterized by macro-diversity and spatial sparsity, has been considered as a potential technology to support ultra-reliable low-latency communication (URLLC). The average performance has been comprehensively investigated for URLLC in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on communications 2024-12, Vol.72 (12), p.7650-7663
Hauptverfasser: Chong, Baolin, Lu, Hancheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7663
container_issue 12
container_start_page 7650
container_title IEEE transactions on communications
container_volume 72
creator Chong, Baolin
Lu, Hancheng
description Cell-free (CF) massive multiple-input multiple-output (mMIMO), characterized by macro-diversity and spatial sparsity, has been considered as a potential technology to support ultra-reliable low-latency communication (URLLC). The average performance has been comprehensively investigated for URLLC in CF mMIMO systems. However, URLLC places its central focus on extreme and rare events, requiring statistical quality of service (QoS) provisioning in CF mMIMO systems. In this paper, we model the statistical QoS provisioning constraints for URLLC in a CF mMIMO system based on extreme value theory (EVT), i.e., delay violation probability boundary and statistical properties of extreme queue values. Based on our analytical work, a power control optimization problem with long-term URLLC constraints is formulated, aiming at minimizing energy consumption. Then, Lyapunov optimization is utilized to decompose this long-term stochastic optimization problem into a series of short-term deterministic problems. Since the short-term problems are non-convex and intractable, a learning-based hyper-heuristic algorithm, consisting of a high-level strategy and multiple low-level heuristics, is proposed. Numerical results verify the effectiveness of parameterizing URLLC in the CF mMIMO system based on EVT and demonstrate that the proposed algorithm outperforms benchmark algorithms in both average delay and delay fluctuations, achieving statistical QoS provisioning.
doi_str_mv 10.1109/TCOMM.2024.3420808
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_3146577496</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10583910</ieee_id><sourcerecordid>3146577496</sourcerecordid><originalsourceid>FETCH-LOGICAL-c926-cd0233bad515de59f6e0459d1077a640ced042c0f867911f18a61e41411de0383</originalsourceid><addsrcrecordid>eNpNkM1Kw0AYRQdRsFZfQFwMuE79JvO_lGBtIaFq63oYk4lMSZM6kxb69qa2C1d3c8-9cBC6JzAhBPTTKlsUxSSFlE0oS0GBukAjwrlKQHF5iUYAGhIhpbpGNzGuAYABpSM0W_a297H3pW3we7fEb6Hb--i71rffuO4C_vzI8wz7FmeuaZJpcA4XNka_H3JeLPDyEHu3ibfoqrZNdHfnHKPV9GWVzZJ88TrPnvOk1KlIygpSSr9sxQmvHNe1cMC4rghIaQWD0lXA0hJqJaQmpCbKCuIYYYRUDqiiY_R4mt2G7mfnYm_W3S60w6OhhAkuJdNiaKWnVhm6GIOrzTb4jQ0HQ8AchZk_YeYozJyFDdDDCfLOuX8AV1QToL9Y5WTQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3146577496</pqid></control><display><type>article</type><title>Statistical QoS Provisioning for URLLC in Cell-Free Massive MIMO Systems</title><source>IEEE Electronic Library (IEL)</source><creator>Chong, Baolin ; Lu, Hancheng</creator><creatorcontrib>Chong, Baolin ; Lu, Hancheng</creatorcontrib><description>Cell-free (CF) massive multiple-input multiple-output (mMIMO), characterized by macro-diversity and spatial sparsity, has been considered as a potential technology to support ultra-reliable low-latency communication (URLLC). The average performance has been comprehensively investigated for URLLC in CF mMIMO systems. However, URLLC places its central focus on extreme and rare events, requiring statistical quality of service (QoS) provisioning in CF mMIMO systems. In this paper, we model the statistical QoS provisioning constraints for URLLC in a CF mMIMO system based on extreme value theory (EVT), i.e., delay violation probability boundary and statistical properties of extreme queue values. Based on our analytical work, a power control optimization problem with long-term URLLC constraints is formulated, aiming at minimizing energy consumption. Then, Lyapunov optimization is utilized to decompose this long-term stochastic optimization problem into a series of short-term deterministic problems. Since the short-term problems are non-convex and intractable, a learning-based hyper-heuristic algorithm, consisting of a high-level strategy and multiple low-level heuristics, is proposed. Numerical results verify the effectiveness of parameterizing URLLC in the CF mMIMO system based on EVT and demonstrate that the proposed algorithm outperforms benchmark algorithms in both average delay and delay fluctuations, achieving statistical QoS provisioning.</description><identifier>ISSN: 0090-6778</identifier><identifier>EISSN: 1558-0857</identifier><identifier>DOI: 10.1109/TCOMM.2024.3420808</identifier><identifier>CODEN: IECMBT</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Boundary value problems ; Cell-free massive multiple-input multiple-output ; Channel estimation ; Constraints ; Delay ; Delays ; Energy consumption ; Extreme value theory ; Extreme values ; Heuristic methods ; hyper-heuristic ; Lyapunov optimization ; Machine learning ; multi-armed bandit ; Optimization ; Power control ; Provisioning ; Quality of service ; Statistical analysis ; statistical QoS provisioning ; Stochastic processes ; Ultra reliable low latency communication</subject><ispartof>IEEE transactions on communications, 2024-12, Vol.72 (12), p.7650-7663</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c926-cd0233bad515de59f6e0459d1077a640ced042c0f867911f18a61e41411de0383</cites><orcidid>0009-0000-2562-3966 ; 0000-0001-8302-4996</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10583910$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10583910$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Chong, Baolin</creatorcontrib><creatorcontrib>Lu, Hancheng</creatorcontrib><title>Statistical QoS Provisioning for URLLC in Cell-Free Massive MIMO Systems</title><title>IEEE transactions on communications</title><addtitle>TCOMM</addtitle><description>Cell-free (CF) massive multiple-input multiple-output (mMIMO), characterized by macro-diversity and spatial sparsity, has been considered as a potential technology to support ultra-reliable low-latency communication (URLLC). The average performance has been comprehensively investigated for URLLC in CF mMIMO systems. However, URLLC places its central focus on extreme and rare events, requiring statistical quality of service (QoS) provisioning in CF mMIMO systems. In this paper, we model the statistical QoS provisioning constraints for URLLC in a CF mMIMO system based on extreme value theory (EVT), i.e., delay violation probability boundary and statistical properties of extreme queue values. Based on our analytical work, a power control optimization problem with long-term URLLC constraints is formulated, aiming at minimizing energy consumption. Then, Lyapunov optimization is utilized to decompose this long-term stochastic optimization problem into a series of short-term deterministic problems. Since the short-term problems are non-convex and intractable, a learning-based hyper-heuristic algorithm, consisting of a high-level strategy and multiple low-level heuristics, is proposed. Numerical results verify the effectiveness of parameterizing URLLC in the CF mMIMO system based on EVT and demonstrate that the proposed algorithm outperforms benchmark algorithms in both average delay and delay fluctuations, achieving statistical QoS provisioning.</description><subject>Algorithms</subject><subject>Boundary value problems</subject><subject>Cell-free massive multiple-input multiple-output</subject><subject>Channel estimation</subject><subject>Constraints</subject><subject>Delay</subject><subject>Delays</subject><subject>Energy consumption</subject><subject>Extreme value theory</subject><subject>Extreme values</subject><subject>Heuristic methods</subject><subject>hyper-heuristic</subject><subject>Lyapunov optimization</subject><subject>Machine learning</subject><subject>multi-armed bandit</subject><subject>Optimization</subject><subject>Power control</subject><subject>Provisioning</subject><subject>Quality of service</subject><subject>Statistical analysis</subject><subject>statistical QoS provisioning</subject><subject>Stochastic processes</subject><subject>Ultra reliable low latency communication</subject><issn>0090-6778</issn><issn>1558-0857</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkM1Kw0AYRQdRsFZfQFwMuE79JvO_lGBtIaFq63oYk4lMSZM6kxb69qa2C1d3c8-9cBC6JzAhBPTTKlsUxSSFlE0oS0GBukAjwrlKQHF5iUYAGhIhpbpGNzGuAYABpSM0W_a297H3pW3we7fEb6Hb--i71rffuO4C_vzI8wz7FmeuaZJpcA4XNka_H3JeLPDyEHu3ibfoqrZNdHfnHKPV9GWVzZJ88TrPnvOk1KlIygpSSr9sxQmvHNe1cMC4rghIaQWD0lXA0hJqJaQmpCbKCuIYYYRUDqiiY_R4mt2G7mfnYm_W3S60w6OhhAkuJdNiaKWnVhm6GIOrzTb4jQ0HQ8AchZk_YeYozJyFDdDDCfLOuX8AV1QToL9Y5WTQ</recordid><startdate>202412</startdate><enddate>202412</enddate><creator>Chong, Baolin</creator><creator>Lu, Hancheng</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0009-0000-2562-3966</orcidid><orcidid>https://orcid.org/0000-0001-8302-4996</orcidid></search><sort><creationdate>202412</creationdate><title>Statistical QoS Provisioning for URLLC in Cell-Free Massive MIMO Systems</title><author>Chong, Baolin ; Lu, Hancheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c926-cd0233bad515de59f6e0459d1077a640ced042c0f867911f18a61e41411de0383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Boundary value problems</topic><topic>Cell-free massive multiple-input multiple-output</topic><topic>Channel estimation</topic><topic>Constraints</topic><topic>Delay</topic><topic>Delays</topic><topic>Energy consumption</topic><topic>Extreme value theory</topic><topic>Extreme values</topic><topic>Heuristic methods</topic><topic>hyper-heuristic</topic><topic>Lyapunov optimization</topic><topic>Machine learning</topic><topic>multi-armed bandit</topic><topic>Optimization</topic><topic>Power control</topic><topic>Provisioning</topic><topic>Quality of service</topic><topic>Statistical analysis</topic><topic>statistical QoS provisioning</topic><topic>Stochastic processes</topic><topic>Ultra reliable low latency communication</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chong, Baolin</creatorcontrib><creatorcontrib>Lu, Hancheng</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chong, Baolin</au><au>Lu, Hancheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Statistical QoS Provisioning for URLLC in Cell-Free Massive MIMO Systems</atitle><jtitle>IEEE transactions on communications</jtitle><stitle>TCOMM</stitle><date>2024-12</date><risdate>2024</risdate><volume>72</volume><issue>12</issue><spage>7650</spage><epage>7663</epage><pages>7650-7663</pages><issn>0090-6778</issn><eissn>1558-0857</eissn><coden>IECMBT</coden><abstract>Cell-free (CF) massive multiple-input multiple-output (mMIMO), characterized by macro-diversity and spatial sparsity, has been considered as a potential technology to support ultra-reliable low-latency communication (URLLC). The average performance has been comprehensively investigated for URLLC in CF mMIMO systems. However, URLLC places its central focus on extreme and rare events, requiring statistical quality of service (QoS) provisioning in CF mMIMO systems. In this paper, we model the statistical QoS provisioning constraints for URLLC in a CF mMIMO system based on extreme value theory (EVT), i.e., delay violation probability boundary and statistical properties of extreme queue values. Based on our analytical work, a power control optimization problem with long-term URLLC constraints is formulated, aiming at minimizing energy consumption. Then, Lyapunov optimization is utilized to decompose this long-term stochastic optimization problem into a series of short-term deterministic problems. Since the short-term problems are non-convex and intractable, a learning-based hyper-heuristic algorithm, consisting of a high-level strategy and multiple low-level heuristics, is proposed. Numerical results verify the effectiveness of parameterizing URLLC in the CF mMIMO system based on EVT and demonstrate that the proposed algorithm outperforms benchmark algorithms in both average delay and delay fluctuations, achieving statistical QoS provisioning.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCOMM.2024.3420808</doi><tpages>14</tpages><orcidid>https://orcid.org/0009-0000-2562-3966</orcidid><orcidid>https://orcid.org/0000-0001-8302-4996</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0090-6778
ispartof IEEE transactions on communications, 2024-12, Vol.72 (12), p.7650-7663
issn 0090-6778
1558-0857
language eng
recordid cdi_proquest_journals_3146577496
source IEEE Electronic Library (IEL)
subjects Algorithms
Boundary value problems
Cell-free massive multiple-input multiple-output
Channel estimation
Constraints
Delay
Delays
Energy consumption
Extreme value theory
Extreme values
Heuristic methods
hyper-heuristic
Lyapunov optimization
Machine learning
multi-armed bandit
Optimization
Power control
Provisioning
Quality of service
Statistical analysis
statistical QoS provisioning
Stochastic processes
Ultra reliable low latency communication
title Statistical QoS Provisioning for URLLC in Cell-Free Massive MIMO Systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T09%3A51%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Statistical%20QoS%20Provisioning%20for%20URLLC%20in%20Cell-Free%20Massive%20MIMO%20Systems&rft.jtitle=IEEE%20transactions%20on%20communications&rft.au=Chong,%20Baolin&rft.date=2024-12&rft.volume=72&rft.issue=12&rft.spage=7650&rft.epage=7663&rft.pages=7650-7663&rft.issn=0090-6778&rft.eissn=1558-0857&rft.coden=IECMBT&rft_id=info:doi/10.1109/TCOMM.2024.3420808&rft_dat=%3Cproquest_RIE%3E3146577496%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3146577496&rft_id=info:pmid/&rft_ieee_id=10583910&rfr_iscdi=true