Spatiotemporal Persistence Landscapes

A method to apply and visualize persistent homology of time series is proposed. The method captures persistent features in space and time, in contrast to the existing procedures, where one usually chooses one while keeping the other fixed. An extended zigzag module that is built from a time series i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-12
Hauptverfasser: Flammer, Martina, Hüper, Knut
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Flammer, Martina
Hüper, Knut
description A method to apply and visualize persistent homology of time series is proposed. The method captures persistent features in space and time, in contrast to the existing procedures, where one usually chooses one while keeping the other fixed. An extended zigzag module that is built from a time series is defined. This module combines ideas from zigzag persistent homology and multiparameter persistent homology. Persistence landscapes are defined for the case of extended zigzag modules using a recent generalization of the rank invariant (Kim, Mémoli, 2021). This new invariant is called spatiotemporal persistence landscapes. Under certain finiteness assumptions, spatiotemporal persistence landscapes are a family of functions that take values in Lebesgue spaces, endowing the space of persistence landscapes with a distance. Stability of this invariant is shown with respect to an adapted interleaving distance for extended zigzag modules. Being an invariant that takes values in a Banach space, spatiotemporal persistence landscapes can be used for statistical analysis as well as for input to machine learning algorithms.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3145910745</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3145910745</sourcerecordid><originalsourceid>FETCH-proquest_journals_31459107453</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRQDS5ILMnML0nNLcgvSsxRCEgtKs4sLknNS05V8EnMSylOTixILeZhYE1LzClO5YXS3AzKbq4hzh66BUX5haWpxSXxWfmlRXlAqXhjQxNTS0MDcxNTY-JUAQBGhC-P</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3145910745</pqid></control><display><type>article</type><title>Spatiotemporal Persistence Landscapes</title><source>Free E- Journals</source><creator>Flammer, Martina ; Hüper, Knut</creator><creatorcontrib>Flammer, Martina ; Hüper, Knut</creatorcontrib><description>A method to apply and visualize persistent homology of time series is proposed. The method captures persistent features in space and time, in contrast to the existing procedures, where one usually chooses one while keeping the other fixed. An extended zigzag module that is built from a time series is defined. This module combines ideas from zigzag persistent homology and multiparameter persistent homology. Persistence landscapes are defined for the case of extended zigzag modules using a recent generalization of the rank invariant (Kim, Mémoli, 2021). This new invariant is called spatiotemporal persistence landscapes. Under certain finiteness assumptions, spatiotemporal persistence landscapes are a family of functions that take values in Lebesgue spaces, endowing the space of persistence landscapes with a distance. Stability of this invariant is shown with respect to an adapted interleaving distance for extended zigzag modules. Being an invariant that takes values in a Banach space, spatiotemporal persistence landscapes can be used for statistical analysis as well as for input to machine learning algorithms.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Banach spaces ; Homology ; Invariants ; Machine learning ; Modules ; Statistical analysis ; Time series</subject><ispartof>arXiv.org, 2024-12</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Flammer, Martina</creatorcontrib><creatorcontrib>Hüper, Knut</creatorcontrib><title>Spatiotemporal Persistence Landscapes</title><title>arXiv.org</title><description>A method to apply and visualize persistent homology of time series is proposed. The method captures persistent features in space and time, in contrast to the existing procedures, where one usually chooses one while keeping the other fixed. An extended zigzag module that is built from a time series is defined. This module combines ideas from zigzag persistent homology and multiparameter persistent homology. Persistence landscapes are defined for the case of extended zigzag modules using a recent generalization of the rank invariant (Kim, Mémoli, 2021). This new invariant is called spatiotemporal persistence landscapes. Under certain finiteness assumptions, spatiotemporal persistence landscapes are a family of functions that take values in Lebesgue spaces, endowing the space of persistence landscapes with a distance. Stability of this invariant is shown with respect to an adapted interleaving distance for extended zigzag modules. Being an invariant that takes values in a Banach space, spatiotemporal persistence landscapes can be used for statistical analysis as well as for input to machine learning algorithms.</description><subject>Algorithms</subject><subject>Banach spaces</subject><subject>Homology</subject><subject>Invariants</subject><subject>Machine learning</subject><subject>Modules</subject><subject>Statistical analysis</subject><subject>Time series</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRQDS5ILMnML0nNLcgvSsxRCEgtKs4sLknNS05V8EnMSylOTixILeZhYE1LzClO5YXS3AzKbq4hzh66BUX5haWpxSXxWfmlRXlAqXhjQxNTS0MDcxNTY-JUAQBGhC-P</recordid><startdate>20241216</startdate><enddate>20241216</enddate><creator>Flammer, Martina</creator><creator>Hüper, Knut</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20241216</creationdate><title>Spatiotemporal Persistence Landscapes</title><author>Flammer, Martina ; Hüper, Knut</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_31459107453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Banach spaces</topic><topic>Homology</topic><topic>Invariants</topic><topic>Machine learning</topic><topic>Modules</topic><topic>Statistical analysis</topic><topic>Time series</topic><toplevel>online_resources</toplevel><creatorcontrib>Flammer, Martina</creatorcontrib><creatorcontrib>Hüper, Knut</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Flammer, Martina</au><au>Hüper, Knut</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Spatiotemporal Persistence Landscapes</atitle><jtitle>arXiv.org</jtitle><date>2024-12-16</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>A method to apply and visualize persistent homology of time series is proposed. The method captures persistent features in space and time, in contrast to the existing procedures, where one usually chooses one while keeping the other fixed. An extended zigzag module that is built from a time series is defined. This module combines ideas from zigzag persistent homology and multiparameter persistent homology. Persistence landscapes are defined for the case of extended zigzag modules using a recent generalization of the rank invariant (Kim, Mémoli, 2021). This new invariant is called spatiotemporal persistence landscapes. Under certain finiteness assumptions, spatiotemporal persistence landscapes are a family of functions that take values in Lebesgue spaces, endowing the space of persistence landscapes with a distance. Stability of this invariant is shown with respect to an adapted interleaving distance for extended zigzag modules. Being an invariant that takes values in a Banach space, spatiotemporal persistence landscapes can be used for statistical analysis as well as for input to machine learning algorithms.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-12
issn 2331-8422
language eng
recordid cdi_proquest_journals_3145910745
source Free E- Journals
subjects Algorithms
Banach spaces
Homology
Invariants
Machine learning
Modules
Statistical analysis
Time series
title Spatiotemporal Persistence Landscapes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T22%3A07%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Spatiotemporal%20Persistence%20Landscapes&rft.jtitle=arXiv.org&rft.au=Flammer,%20Martina&rft.date=2024-12-16&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3145910745%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3145910745&rft_id=info:pmid/&rfr_iscdi=true