Toward a framework for risk mitigation of potential misuse of artificial intelligence in biomedical research

The rapid advancement of artificial intelligence (AI) in biomedical research presents considerable potential for misuse, including authoritarian surveillance, data misuse, bioweapon development, increase in inequity and abuse of privacy. We propose a multi-pronged framework for researchers to mitiga...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature machine intelligence 2024-11, Vol.6 (12), p.1435-1442
Hauptverfasser: Trotsyuk, Artem A., Waeiss, Quinn, Bhatia, Raina Talwar, Aponte, Brandon J., Heffernan, Isabella M. L., Madgavkar, Devika, Felder, Ryan Marshall, Lehmann, Lisa Soleymani, Palmer, Megan J., Greely, Hank, Wald, Russell, Goetz, Lea, Trengove, Markus, Vandersluis, Robert, Lin, Herbert, Cho, Mildred K., Altman, Russ B., Endy, Drew, Relman, David A., Levi, Margaret, Satz, Debra, Magnus, David
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1442
container_issue 12
container_start_page 1435
container_title Nature machine intelligence
container_volume 6
creator Trotsyuk, Artem A.
Waeiss, Quinn
Bhatia, Raina Talwar
Aponte, Brandon J.
Heffernan, Isabella M. L.
Madgavkar, Devika
Felder, Ryan Marshall
Lehmann, Lisa Soleymani
Palmer, Megan J.
Greely, Hank
Wald, Russell
Goetz, Lea
Trengove, Markus
Vandersluis, Robert
Lin, Herbert
Cho, Mildred K.
Altman, Russ B.
Endy, Drew
Relman, David A.
Levi, Margaret
Satz, Debra
Magnus, David
description The rapid advancement of artificial intelligence (AI) in biomedical research presents considerable potential for misuse, including authoritarian surveillance, data misuse, bioweapon development, increase in inequity and abuse of privacy. We propose a multi-pronged framework for researchers to mitigate these risks, looking first to existing ethical frameworks and regulatory measures researchers can adapt to their own work, next to off-the-shelf AI solutions, then to design-specific solutions researchers can build into their AI to mitigate misuse. When researchers remain unable to address the potential for harmful misuse, and the risks outweigh potential benefits, we recommend researchers consider a different approach to answering their research question, or a new research question if the risks remain too great. We apply this framework to three different domains of AI research where misuse is likely to be problematic: (1) AI for drug and chemical discovery; (2) generative models for synthetic data; (3) ambient intelligence. The wide adoption of AI in biomedical research raises concerns about misuse risks. Trotsyuk, Waeiss et al. propose a framework that provides a starting point for researchers to consider how risks specific to their work could be mitigated, using existing ethical frameworks, regulatory measures and off-the-shelf AI solutions.
doi_str_mv 10.1038/s42256-024-00926-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3145910042</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3145910042</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-6d6b7c145630be2da44dfddda669c6b9db51baad19719ae4c2ae55b844d52063</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWGr_gKuA69GbZztLKb5AcNN9yCR3atqZSU2mFP-9qRV05ermnnznXDiEXDO4ZSAWd1lyrnQFXFYANdeVOCMTrjiv1ELU53_el2SW8wYAOJNSgZyQbhUPNnlqaZtsj4eYtrSNiaaQt7QPY1jbMcSBxpbu4ojDGGxX9LzPeNRsGkMb3FEMw4hdF9Y4OCwLbULs0QdXvhJmtMm9X5GL1nYZZz9zSlaPD6vlc_X69vSyvH-tHAcYK-11M3dMKi2gQe6tlL713luta6eb2jeKNdZ6Vs9ZbVE6blGpZlEwxUGLKbk5xe5S_NhjHs0m7tNQLhpRUmsGIHmh-IlyKeacsDW7FHqbPg0Dc-zVnHo1pVfz3asRxSROplzgYY3pN_of1xci5nz5</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3145910042</pqid></control><display><type>article</type><title>Toward a framework for risk mitigation of potential misuse of artificial intelligence in biomedical research</title><source>Nature Journals Online</source><source>SpringerLink Journals - AutoHoldings</source><creator>Trotsyuk, Artem A. ; Waeiss, Quinn ; Bhatia, Raina Talwar ; Aponte, Brandon J. ; Heffernan, Isabella M. L. ; Madgavkar, Devika ; Felder, Ryan Marshall ; Lehmann, Lisa Soleymani ; Palmer, Megan J. ; Greely, Hank ; Wald, Russell ; Goetz, Lea ; Trengove, Markus ; Vandersluis, Robert ; Lin, Herbert ; Cho, Mildred K. ; Altman, Russ B. ; Endy, Drew ; Relman, David A. ; Levi, Margaret ; Satz, Debra ; Magnus, David</creator><creatorcontrib>Trotsyuk, Artem A. ; Waeiss, Quinn ; Bhatia, Raina Talwar ; Aponte, Brandon J. ; Heffernan, Isabella M. L. ; Madgavkar, Devika ; Felder, Ryan Marshall ; Lehmann, Lisa Soleymani ; Palmer, Megan J. ; Greely, Hank ; Wald, Russell ; Goetz, Lea ; Trengove, Markus ; Vandersluis, Robert ; Lin, Herbert ; Cho, Mildred K. ; Altman, Russ B. ; Endy, Drew ; Relman, David A. ; Levi, Margaret ; Satz, Debra ; Magnus, David</creatorcontrib><description>The rapid advancement of artificial intelligence (AI) in biomedical research presents considerable potential for misuse, including authoritarian surveillance, data misuse, bioweapon development, increase in inequity and abuse of privacy. We propose a multi-pronged framework for researchers to mitigate these risks, looking first to existing ethical frameworks and regulatory measures researchers can adapt to their own work, next to off-the-shelf AI solutions, then to design-specific solutions researchers can build into their AI to mitigate misuse. When researchers remain unable to address the potential for harmful misuse, and the risks outweigh potential benefits, we recommend researchers consider a different approach to answering their research question, or a new research question if the risks remain too great. We apply this framework to three different domains of AI research where misuse is likely to be problematic: (1) AI for drug and chemical discovery; (2) generative models for synthetic data; (3) ambient intelligence. The wide adoption of AI in biomedical research raises concerns about misuse risks. Trotsyuk, Waeiss et al. propose a framework that provides a starting point for researchers to consider how risks specific to their work could be mitigated, using existing ethical frameworks, regulatory measures and off-the-shelf AI solutions.</description><identifier>ISSN: 2522-5839</identifier><identifier>EISSN: 2522-5839</identifier><identifier>DOI: 10.1038/s42256-024-00926-3</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>706/648/179 ; 706/648/453 ; Ambient intelligence ; Artificial intelligence ; Bioengineering ; Biomedical data ; Biomedical research ; Drug development ; Engineering ; Ethics ; Perspective ; R&amp;D ; Research &amp; development ; Researchers ; Synthetic data ; Systems development</subject><ispartof>Nature machine intelligence, 2024-11, Vol.6 (12), p.1435-1442</ispartof><rights>Springer Nature Limited 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>Copyright Nature Publishing Group Dec 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c200t-6d6b7c145630be2da44dfddda669c6b9db51baad19719ae4c2ae55b844d52063</cites><orcidid>0000-0002-4880-3043 ; 0000-0003-1306-4946 ; 0000-0003-3859-2905 ; 0000-0001-8331-1354</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s42256-024-00926-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s42256-024-00926-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Trotsyuk, Artem A.</creatorcontrib><creatorcontrib>Waeiss, Quinn</creatorcontrib><creatorcontrib>Bhatia, Raina Talwar</creatorcontrib><creatorcontrib>Aponte, Brandon J.</creatorcontrib><creatorcontrib>Heffernan, Isabella M. L.</creatorcontrib><creatorcontrib>Madgavkar, Devika</creatorcontrib><creatorcontrib>Felder, Ryan Marshall</creatorcontrib><creatorcontrib>Lehmann, Lisa Soleymani</creatorcontrib><creatorcontrib>Palmer, Megan J.</creatorcontrib><creatorcontrib>Greely, Hank</creatorcontrib><creatorcontrib>Wald, Russell</creatorcontrib><creatorcontrib>Goetz, Lea</creatorcontrib><creatorcontrib>Trengove, Markus</creatorcontrib><creatorcontrib>Vandersluis, Robert</creatorcontrib><creatorcontrib>Lin, Herbert</creatorcontrib><creatorcontrib>Cho, Mildred K.</creatorcontrib><creatorcontrib>Altman, Russ B.</creatorcontrib><creatorcontrib>Endy, Drew</creatorcontrib><creatorcontrib>Relman, David A.</creatorcontrib><creatorcontrib>Levi, Margaret</creatorcontrib><creatorcontrib>Satz, Debra</creatorcontrib><creatorcontrib>Magnus, David</creatorcontrib><title>Toward a framework for risk mitigation of potential misuse of artificial intelligence in biomedical research</title><title>Nature machine intelligence</title><addtitle>Nat Mach Intell</addtitle><description>The rapid advancement of artificial intelligence (AI) in biomedical research presents considerable potential for misuse, including authoritarian surveillance, data misuse, bioweapon development, increase in inequity and abuse of privacy. We propose a multi-pronged framework for researchers to mitigate these risks, looking first to existing ethical frameworks and regulatory measures researchers can adapt to their own work, next to off-the-shelf AI solutions, then to design-specific solutions researchers can build into their AI to mitigate misuse. When researchers remain unable to address the potential for harmful misuse, and the risks outweigh potential benefits, we recommend researchers consider a different approach to answering their research question, or a new research question if the risks remain too great. We apply this framework to three different domains of AI research where misuse is likely to be problematic: (1) AI for drug and chemical discovery; (2) generative models for synthetic data; (3) ambient intelligence. The wide adoption of AI in biomedical research raises concerns about misuse risks. Trotsyuk, Waeiss et al. propose a framework that provides a starting point for researchers to consider how risks specific to their work could be mitigated, using existing ethical frameworks, regulatory measures and off-the-shelf AI solutions.</description><subject>706/648/179</subject><subject>706/648/453</subject><subject>Ambient intelligence</subject><subject>Artificial intelligence</subject><subject>Bioengineering</subject><subject>Biomedical data</subject><subject>Biomedical research</subject><subject>Drug development</subject><subject>Engineering</subject><subject>Ethics</subject><subject>Perspective</subject><subject>R&amp;D</subject><subject>Research &amp; development</subject><subject>Researchers</subject><subject>Synthetic data</subject><subject>Systems development</subject><issn>2522-5839</issn><issn>2522-5839</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEUhYMoWGr_gKuA69GbZztLKb5AcNN9yCR3atqZSU2mFP-9qRV05ermnnznXDiEXDO4ZSAWd1lyrnQFXFYANdeVOCMTrjiv1ELU53_el2SW8wYAOJNSgZyQbhUPNnlqaZtsj4eYtrSNiaaQt7QPY1jbMcSBxpbu4ojDGGxX9LzPeNRsGkMb3FEMw4hdF9Y4OCwLbULs0QdXvhJmtMm9X5GL1nYZZz9zSlaPD6vlc_X69vSyvH-tHAcYK-11M3dMKi2gQe6tlL713luta6eb2jeKNdZ6Vs9ZbVE6blGpZlEwxUGLKbk5xe5S_NhjHs0m7tNQLhpRUmsGIHmh-IlyKeacsDW7FHqbPg0Dc-zVnHo1pVfz3asRxSROplzgYY3pN_of1xci5nz5</recordid><startdate>20241126</startdate><enddate>20241126</enddate><creator>Trotsyuk, Artem A.</creator><creator>Waeiss, Quinn</creator><creator>Bhatia, Raina Talwar</creator><creator>Aponte, Brandon J.</creator><creator>Heffernan, Isabella M. L.</creator><creator>Madgavkar, Devika</creator><creator>Felder, Ryan Marshall</creator><creator>Lehmann, Lisa Soleymani</creator><creator>Palmer, Megan J.</creator><creator>Greely, Hank</creator><creator>Wald, Russell</creator><creator>Goetz, Lea</creator><creator>Trengove, Markus</creator><creator>Vandersluis, Robert</creator><creator>Lin, Herbert</creator><creator>Cho, Mildred K.</creator><creator>Altman, Russ B.</creator><creator>Endy, Drew</creator><creator>Relman, David A.</creator><creator>Levi, Margaret</creator><creator>Satz, Debra</creator><creator>Magnus, David</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-4880-3043</orcidid><orcidid>https://orcid.org/0000-0003-1306-4946</orcidid><orcidid>https://orcid.org/0000-0003-3859-2905</orcidid><orcidid>https://orcid.org/0000-0001-8331-1354</orcidid></search><sort><creationdate>20241126</creationdate><title>Toward a framework for risk mitigation of potential misuse of artificial intelligence in biomedical research</title><author>Trotsyuk, Artem A. ; Waeiss, Quinn ; Bhatia, Raina Talwar ; Aponte, Brandon J. ; Heffernan, Isabella M. L. ; Madgavkar, Devika ; Felder, Ryan Marshall ; Lehmann, Lisa Soleymani ; Palmer, Megan J. ; Greely, Hank ; Wald, Russell ; Goetz, Lea ; Trengove, Markus ; Vandersluis, Robert ; Lin, Herbert ; Cho, Mildred K. ; Altman, Russ B. ; Endy, Drew ; Relman, David A. ; Levi, Margaret ; Satz, Debra ; Magnus, David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-6d6b7c145630be2da44dfddda669c6b9db51baad19719ae4c2ae55b844d52063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>706/648/179</topic><topic>706/648/453</topic><topic>Ambient intelligence</topic><topic>Artificial intelligence</topic><topic>Bioengineering</topic><topic>Biomedical data</topic><topic>Biomedical research</topic><topic>Drug development</topic><topic>Engineering</topic><topic>Ethics</topic><topic>Perspective</topic><topic>R&amp;D</topic><topic>Research &amp; development</topic><topic>Researchers</topic><topic>Synthetic data</topic><topic>Systems development</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Trotsyuk, Artem A.</creatorcontrib><creatorcontrib>Waeiss, Quinn</creatorcontrib><creatorcontrib>Bhatia, Raina Talwar</creatorcontrib><creatorcontrib>Aponte, Brandon J.</creatorcontrib><creatorcontrib>Heffernan, Isabella M. L.</creatorcontrib><creatorcontrib>Madgavkar, Devika</creatorcontrib><creatorcontrib>Felder, Ryan Marshall</creatorcontrib><creatorcontrib>Lehmann, Lisa Soleymani</creatorcontrib><creatorcontrib>Palmer, Megan J.</creatorcontrib><creatorcontrib>Greely, Hank</creatorcontrib><creatorcontrib>Wald, Russell</creatorcontrib><creatorcontrib>Goetz, Lea</creatorcontrib><creatorcontrib>Trengove, Markus</creatorcontrib><creatorcontrib>Vandersluis, Robert</creatorcontrib><creatorcontrib>Lin, Herbert</creatorcontrib><creatorcontrib>Cho, Mildred K.</creatorcontrib><creatorcontrib>Altman, Russ B.</creatorcontrib><creatorcontrib>Endy, Drew</creatorcontrib><creatorcontrib>Relman, David A.</creatorcontrib><creatorcontrib>Levi, Margaret</creatorcontrib><creatorcontrib>Satz, Debra</creatorcontrib><creatorcontrib>Magnus, David</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Nature machine intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Trotsyuk, Artem A.</au><au>Waeiss, Quinn</au><au>Bhatia, Raina Talwar</au><au>Aponte, Brandon J.</au><au>Heffernan, Isabella M. L.</au><au>Madgavkar, Devika</au><au>Felder, Ryan Marshall</au><au>Lehmann, Lisa Soleymani</au><au>Palmer, Megan J.</au><au>Greely, Hank</au><au>Wald, Russell</au><au>Goetz, Lea</au><au>Trengove, Markus</au><au>Vandersluis, Robert</au><au>Lin, Herbert</au><au>Cho, Mildred K.</au><au>Altman, Russ B.</au><au>Endy, Drew</au><au>Relman, David A.</au><au>Levi, Margaret</au><au>Satz, Debra</au><au>Magnus, David</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Toward a framework for risk mitigation of potential misuse of artificial intelligence in biomedical research</atitle><jtitle>Nature machine intelligence</jtitle><stitle>Nat Mach Intell</stitle><date>2024-11-26</date><risdate>2024</risdate><volume>6</volume><issue>12</issue><spage>1435</spage><epage>1442</epage><pages>1435-1442</pages><issn>2522-5839</issn><eissn>2522-5839</eissn><abstract>The rapid advancement of artificial intelligence (AI) in biomedical research presents considerable potential for misuse, including authoritarian surveillance, data misuse, bioweapon development, increase in inequity and abuse of privacy. We propose a multi-pronged framework for researchers to mitigate these risks, looking first to existing ethical frameworks and regulatory measures researchers can adapt to their own work, next to off-the-shelf AI solutions, then to design-specific solutions researchers can build into their AI to mitigate misuse. When researchers remain unable to address the potential for harmful misuse, and the risks outweigh potential benefits, we recommend researchers consider a different approach to answering their research question, or a new research question if the risks remain too great. We apply this framework to three different domains of AI research where misuse is likely to be problematic: (1) AI for drug and chemical discovery; (2) generative models for synthetic data; (3) ambient intelligence. The wide adoption of AI in biomedical research raises concerns about misuse risks. Trotsyuk, Waeiss et al. propose a framework that provides a starting point for researchers to consider how risks specific to their work could be mitigated, using existing ethical frameworks, regulatory measures and off-the-shelf AI solutions.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s42256-024-00926-3</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-4880-3043</orcidid><orcidid>https://orcid.org/0000-0003-1306-4946</orcidid><orcidid>https://orcid.org/0000-0003-3859-2905</orcidid><orcidid>https://orcid.org/0000-0001-8331-1354</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2522-5839
ispartof Nature machine intelligence, 2024-11, Vol.6 (12), p.1435-1442
issn 2522-5839
2522-5839
language eng
recordid cdi_proquest_journals_3145910042
source Nature Journals Online; SpringerLink Journals - AutoHoldings
subjects 706/648/179
706/648/453
Ambient intelligence
Artificial intelligence
Bioengineering
Biomedical data
Biomedical research
Drug development
Engineering
Ethics
Perspective
R&D
Research & development
Researchers
Synthetic data
Systems development
title Toward a framework for risk mitigation of potential misuse of artificial intelligence in biomedical research
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T20%3A57%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Toward%20a%20framework%20for%20risk%20mitigation%20of%20potential%20misuse%20of%20artificial%20intelligence%20in%20biomedical%20research&rft.jtitle=Nature%20machine%20intelligence&rft.au=Trotsyuk,%20Artem%20A.&rft.date=2024-11-26&rft.volume=6&rft.issue=12&rft.spage=1435&rft.epage=1442&rft.pages=1435-1442&rft.issn=2522-5839&rft.eissn=2522-5839&rft_id=info:doi/10.1038/s42256-024-00926-3&rft_dat=%3Cproquest_cross%3E3145910042%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3145910042&rft_id=info:pmid/&rfr_iscdi=true