Control of Tollmien–Schlichting waves using particle swarm optimization

The implementation of the Particle Swarm Optimization (PSO) algorithm is investigated to optimize the active attenuation of Tollmien–Schlichting (TS) waves developing in a two-dimensional zero pressure gradient boundary layer. This is done numerically, where the PSO algorithm optimizes the character...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics of fluids (1994) 2024-12, Vol.36 (12)
Hauptverfasser: Mohammadikalakoo, B., Kotsonis, M., Doan, N. A. K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 12
container_start_page
container_title Physics of fluids (1994)
container_volume 36
creator Mohammadikalakoo, B.
Kotsonis, M.
Doan, N. A. K.
description The implementation of the Particle Swarm Optimization (PSO) algorithm is investigated to optimize the active attenuation of Tollmien–Schlichting (TS) waves developing in a two-dimensional zero pressure gradient boundary layer. This is done numerically, where the PSO algorithm optimizes the characteristics of harmonic suction and blowing jets, in a feedforward control framework. The PSO-based controller selects and modifies the phase and amplitude of the jets to minimize the pressure fluctuation amplitude downstream of the actuator. To allow for efficient simulation, the 2-dimensional incompressible Navier–Stokes equations are expanded in a harmonic perturbation form and solved in linear and nonlinear variants using harmonic balancing. This study explores the performance of control in both linear and nonlinear development regimes of TS waves through control of single and multi-frequency ensembles of instabilities. Respectively, linear and nonlinear controller design approaches are employed. The findings reveal that the integration of PSO into the control design produces an effective suppression of TS waves through opposition control. The linearly designed controller effectively attenuates single and multi-frequency disturbances. However, when applied in regions of strong nonlinear interactions among instability modes, performance degradation is observed. On the contrary, the nonlinearly designed controller proves effective in mitigating nonlinear multi-frequency instabilities dominating the later stages of growth. A near-complete elimination of TS waves is achieved by accounting for nonlinear interactions among harmonic modes detected by an input sensor. This highlights the benefit of integrating the PSO algorithm in control of TS waves, particularly in the nonlinear growth regime, where classical control methods are generally ineffective.
doi_str_mv 10.1063/5.0243518
format Article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_3145864280</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3145864280</sourcerecordid><originalsourceid>FETCH-LOGICAL-c217t-f00e5d9dce3c3836134c004208edb9a08b3ae74b4dd66cf6048698fddd185c0a3</originalsourceid><addsrcrecordid>eNp90LFOwzAQBmALgUQpDLxBJCaQUs6x4zgjqihUqsRAmS3XdqirJA62SwUT78Ab8iQktDPT_cOnO92P0CWGCQZGbvMJZJTkmB-hEQZepgVj7HjIBaSMEXyKzkLYAAApMzZC86lro3d14qpk6eq6sab9-fp-VuvaqnW07Wuyk-8mJNsw5E76aFVtkrCTvklcF21jP2W0rj1HJ5Wsg7k4zDF6md0vp4_p4ulhPr1bpCrDRUwrAJPrUitDFOGEYUIVAM2AG70qJfAVkaagK6o1Y6piQDkreaW1xjxXIMkYXe33dt69bU2IYuO2vu1PCoJpzhnNOPTqeq-UdyF4U4nO20b6D4FBDE2JXBya6u3N3gZl498v_-BfBGNplw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3145864280</pqid></control><display><type>article</type><title>Control of Tollmien–Schlichting waves using particle swarm optimization</title><source>AIP Journals Complete</source><creator>Mohammadikalakoo, B. ; Kotsonis, M. ; Doan, N. A. K.</creator><creatorcontrib>Mohammadikalakoo, B. ; Kotsonis, M. ; Doan, N. A. K.</creatorcontrib><description>The implementation of the Particle Swarm Optimization (PSO) algorithm is investigated to optimize the active attenuation of Tollmien–Schlichting (TS) waves developing in a two-dimensional zero pressure gradient boundary layer. This is done numerically, where the PSO algorithm optimizes the characteristics of harmonic suction and blowing jets, in a feedforward control framework. The PSO-based controller selects and modifies the phase and amplitude of the jets to minimize the pressure fluctuation amplitude downstream of the actuator. To allow for efficient simulation, the 2-dimensional incompressible Navier–Stokes equations are expanded in a harmonic perturbation form and solved in linear and nonlinear variants using harmonic balancing. This study explores the performance of control in both linear and nonlinear development regimes of TS waves through control of single and multi-frequency ensembles of instabilities. Respectively, linear and nonlinear controller design approaches are employed. The findings reveal that the integration of PSO into the control design produces an effective suppression of TS waves through opposition control. The linearly designed controller effectively attenuates single and multi-frequency disturbances. However, when applied in regions of strong nonlinear interactions among instability modes, performance degradation is observed. On the contrary, the nonlinearly designed controller proves effective in mitigating nonlinear multi-frequency instabilities dominating the later stages of growth. A near-complete elimination of TS waves is achieved by accounting for nonlinear interactions among harmonic modes detected by an input sensor. This highlights the benefit of integrating the PSO algorithm in control of TS waves, particularly in the nonlinear growth regime, where classical control methods are generally ineffective.</description><identifier>ISSN: 1070-6631</identifier><identifier>EISSN: 1089-7666</identifier><identifier>DOI: 10.1063/5.0243518</identifier><identifier>CODEN: PHFLE6</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Actuators ; Algorithms ; Amplitudes ; Blowing pressure ; Control methods ; Control systems design ; Controllers ; Design ; Feedforward control ; Harmonic control ; Nonlinear control ; Particle swarm optimization ; Performance degradation ; Suction ; Two dimensional boundary layer ; Two dimensional jets</subject><ispartof>Physics of fluids (1994), 2024-12, Vol.36 (12)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC) license (https://creativecommons.org/licenses/by-nc/4.0/).</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c217t-f00e5d9dce3c3836134c004208edb9a08b3ae74b4dd66cf6048698fddd185c0a3</cites><orcidid>0000-0002-9890-3173 ; 0000-0003-0263-3648 ; 0000-0001-7165-5379</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,790,4498,27901,27902</link.rule.ids></links><search><creatorcontrib>Mohammadikalakoo, B.</creatorcontrib><creatorcontrib>Kotsonis, M.</creatorcontrib><creatorcontrib>Doan, N. A. K.</creatorcontrib><title>Control of Tollmien–Schlichting waves using particle swarm optimization</title><title>Physics of fluids (1994)</title><description>The implementation of the Particle Swarm Optimization (PSO) algorithm is investigated to optimize the active attenuation of Tollmien–Schlichting (TS) waves developing in a two-dimensional zero pressure gradient boundary layer. This is done numerically, where the PSO algorithm optimizes the characteristics of harmonic suction and blowing jets, in a feedforward control framework. The PSO-based controller selects and modifies the phase and amplitude of the jets to minimize the pressure fluctuation amplitude downstream of the actuator. To allow for efficient simulation, the 2-dimensional incompressible Navier–Stokes equations are expanded in a harmonic perturbation form and solved in linear and nonlinear variants using harmonic balancing. This study explores the performance of control in both linear and nonlinear development regimes of TS waves through control of single and multi-frequency ensembles of instabilities. Respectively, linear and nonlinear controller design approaches are employed. The findings reveal that the integration of PSO into the control design produces an effective suppression of TS waves through opposition control. The linearly designed controller effectively attenuates single and multi-frequency disturbances. However, when applied in regions of strong nonlinear interactions among instability modes, performance degradation is observed. On the contrary, the nonlinearly designed controller proves effective in mitigating nonlinear multi-frequency instabilities dominating the later stages of growth. A near-complete elimination of TS waves is achieved by accounting for nonlinear interactions among harmonic modes detected by an input sensor. This highlights the benefit of integrating the PSO algorithm in control of TS waves, particularly in the nonlinear growth regime, where classical control methods are generally ineffective.</description><subject>Actuators</subject><subject>Algorithms</subject><subject>Amplitudes</subject><subject>Blowing pressure</subject><subject>Control methods</subject><subject>Control systems design</subject><subject>Controllers</subject><subject>Design</subject><subject>Feedforward control</subject><subject>Harmonic control</subject><subject>Nonlinear control</subject><subject>Particle swarm optimization</subject><subject>Performance degradation</subject><subject>Suction</subject><subject>Two dimensional boundary layer</subject><subject>Two dimensional jets</subject><issn>1070-6631</issn><issn>1089-7666</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp90LFOwzAQBmALgUQpDLxBJCaQUs6x4zgjqihUqsRAmS3XdqirJA62SwUT78Ab8iQktDPT_cOnO92P0CWGCQZGbvMJZJTkmB-hEQZepgVj7HjIBaSMEXyKzkLYAAApMzZC86lro3d14qpk6eq6sab9-fp-VuvaqnW07Wuyk-8mJNsw5E76aFVtkrCTvklcF21jP2W0rj1HJ5Wsg7k4zDF6md0vp4_p4ulhPr1bpCrDRUwrAJPrUitDFOGEYUIVAM2AG70qJfAVkaagK6o1Y6piQDkreaW1xjxXIMkYXe33dt69bU2IYuO2vu1PCoJpzhnNOPTqeq-UdyF4U4nO20b6D4FBDE2JXBya6u3N3gZl498v_-BfBGNplw</recordid><startdate>202412</startdate><enddate>202412</enddate><creator>Mohammadikalakoo, B.</creator><creator>Kotsonis, M.</creator><creator>Doan, N. A. K.</creator><general>American Institute of Physics</general><scope>AJDQP</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-9890-3173</orcidid><orcidid>https://orcid.org/0000-0003-0263-3648</orcidid><orcidid>https://orcid.org/0000-0001-7165-5379</orcidid></search><sort><creationdate>202412</creationdate><title>Control of Tollmien–Schlichting waves using particle swarm optimization</title><author>Mohammadikalakoo, B. ; Kotsonis, M. ; Doan, N. A. K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c217t-f00e5d9dce3c3836134c004208edb9a08b3ae74b4dd66cf6048698fddd185c0a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Actuators</topic><topic>Algorithms</topic><topic>Amplitudes</topic><topic>Blowing pressure</topic><topic>Control methods</topic><topic>Control systems design</topic><topic>Controllers</topic><topic>Design</topic><topic>Feedforward control</topic><topic>Harmonic control</topic><topic>Nonlinear control</topic><topic>Particle swarm optimization</topic><topic>Performance degradation</topic><topic>Suction</topic><topic>Two dimensional boundary layer</topic><topic>Two dimensional jets</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mohammadikalakoo, B.</creatorcontrib><creatorcontrib>Kotsonis, M.</creatorcontrib><creatorcontrib>Doan, N. A. K.</creatorcontrib><collection>AIP Open Access Journals</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physics of fluids (1994)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mohammadikalakoo, B.</au><au>Kotsonis, M.</au><au>Doan, N. A. K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Control of Tollmien–Schlichting waves using particle swarm optimization</atitle><jtitle>Physics of fluids (1994)</jtitle><date>2024-12</date><risdate>2024</risdate><volume>36</volume><issue>12</issue><issn>1070-6631</issn><eissn>1089-7666</eissn><coden>PHFLE6</coden><abstract>The implementation of the Particle Swarm Optimization (PSO) algorithm is investigated to optimize the active attenuation of Tollmien–Schlichting (TS) waves developing in a two-dimensional zero pressure gradient boundary layer. This is done numerically, where the PSO algorithm optimizes the characteristics of harmonic suction and blowing jets, in a feedforward control framework. The PSO-based controller selects and modifies the phase and amplitude of the jets to minimize the pressure fluctuation amplitude downstream of the actuator. To allow for efficient simulation, the 2-dimensional incompressible Navier–Stokes equations are expanded in a harmonic perturbation form and solved in linear and nonlinear variants using harmonic balancing. This study explores the performance of control in both linear and nonlinear development regimes of TS waves through control of single and multi-frequency ensembles of instabilities. Respectively, linear and nonlinear controller design approaches are employed. The findings reveal that the integration of PSO into the control design produces an effective suppression of TS waves through opposition control. The linearly designed controller effectively attenuates single and multi-frequency disturbances. However, when applied in regions of strong nonlinear interactions among instability modes, performance degradation is observed. On the contrary, the nonlinearly designed controller proves effective in mitigating nonlinear multi-frequency instabilities dominating the later stages of growth. A near-complete elimination of TS waves is achieved by accounting for nonlinear interactions among harmonic modes detected by an input sensor. This highlights the benefit of integrating the PSO algorithm in control of TS waves, particularly in the nonlinear growth regime, where classical control methods are generally ineffective.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0243518</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-9890-3173</orcidid><orcidid>https://orcid.org/0000-0003-0263-3648</orcidid><orcidid>https://orcid.org/0000-0001-7165-5379</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1070-6631
ispartof Physics of fluids (1994), 2024-12, Vol.36 (12)
issn 1070-6631
1089-7666
language eng
recordid cdi_proquest_journals_3145864280
source AIP Journals Complete
subjects Actuators
Algorithms
Amplitudes
Blowing pressure
Control methods
Control systems design
Controllers
Design
Feedforward control
Harmonic control
Nonlinear control
Particle swarm optimization
Performance degradation
Suction
Two dimensional boundary layer
Two dimensional jets
title Control of Tollmien–Schlichting waves using particle swarm optimization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T17%3A41%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Control%20of%20Tollmien%E2%80%93Schlichting%20waves%20using%20particle%20swarm%20optimization&rft.jtitle=Physics%20of%20fluids%20(1994)&rft.au=Mohammadikalakoo,%20B.&rft.date=2024-12&rft.volume=36&rft.issue=12&rft.issn=1070-6631&rft.eissn=1089-7666&rft.coden=PHFLE6&rft_id=info:doi/10.1063/5.0243518&rft_dat=%3Cproquest_scita%3E3145864280%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3145864280&rft_id=info:pmid/&rfr_iscdi=true