Flock optimization induced deep learning for improved diabetes disease classification

Diabetic disease classification requires a precise understanding of the clinical inputs and their intensity as observed through different stages. Automated and machine‐centric classification requires validated data handling and non‐converging inputs. For improving the classification precision impact...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Expert systems 2025-01, Vol.42 (1), p.n/a
Hauptverfasser: Balasubramaniyan, Divager, Husin, Nor Azura, Mustapha, Norwati, Sharef, Nurfadhlina Mohd, Mohd Aris, Teh Noranis
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 1
container_start_page
container_title Expert systems
container_volume 42
creator Balasubramaniyan, Divager
Husin, Nor Azura
Mustapha, Norwati
Sharef, Nurfadhlina Mohd
Mohd Aris, Teh Noranis
description Diabetic disease classification requires a precise understanding of the clinical inputs and their intensity as observed through different stages. Automated and machine‐centric classification requires validated data handling and non‐converging inputs. For improving the classification precision impacted due by complex computations, this article introduces an assimilated method incorporating flock optimization and conventional deep learning. Deep learning trains the classification system through the best‐fit solution generated by the flock optimization. The features from the input data are first identified for which an initial population is initiated. The identified features are classified based on their leap‐up behaviour; this behaviour is induced if the data feature modifies the actual representation. If the data feature shows up over‐fitting behaviour, then it is classified as abnormal and is discarded. Therefore the objective function is to identify the best‐fitting data feature from the maximum flock members showing similar leap‐up behaviour. This output is used for training the deep learning paradigm for classifying precision‐less and high features. The precision is determined using existing classified data that matches better the flock output. If the classified data is under less precision, then the leap‐up behaviours' objective is tuned to eliminate over‐fitting inputs. Therefore, the variable features are thwarted for preventing precision degradation for varying diabetics' clinical observed data. The introduced system maximize the recognition accuracy by 8.47% and minimize the complexity by 7.65%.
doi_str_mv 10.1111/exsy.13305
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3145850116</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3145850116</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2605-8da346f4945c157ef06965df754d5c765e1f95d22ef0685cdaae1e3b12cc1603</originalsourceid><addsrcrecordid>eNp9kEFPwzAMhSMEEmNw4RdU4obUEbdJ2h7RtAHSJA4MCU5Rljgoo2tL0gHl19OunPHFlt7nZ-sRcgl0Bn3d4HfoZpCmlB-RCTCRxzQt2DGZ0ESImGUJPSVnIWwppZBlYkKel2Wt36O6ad3O_ajW1VXkKrPXaCKD2EQlKl-56i2ytY_crvH15yA5tcEWQz8EVAEjXaoQnHX6YHFOTqwqA1789SlZLxfr-X28erx7mN-uYp0IyuPcqJQJywrGNfAMLRWF4MZmnBmuM8ERbMFNkgxKzrVRCgHTDSRag6DplFyNtv1XH3sMrdzWe1_1F2UKjOecAoieuh4p7esQPFrZeLdTvpNA5ZCaHFKTh9R6GEb4y5XY_UPKxcvT67jzC1gycK0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3145850116</pqid></control><display><type>article</type><title>Flock optimization induced deep learning for improved diabetes disease classification</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Balasubramaniyan, Divager ; Husin, Nor Azura ; Mustapha, Norwati ; Sharef, Nurfadhlina Mohd ; Mohd Aris, Teh Noranis</creator><creatorcontrib>Balasubramaniyan, Divager ; Husin, Nor Azura ; Mustapha, Norwati ; Sharef, Nurfadhlina Mohd ; Mohd Aris, Teh Noranis</creatorcontrib><description>Diabetic disease classification requires a precise understanding of the clinical inputs and their intensity as observed through different stages. Automated and machine‐centric classification requires validated data handling and non‐converging inputs. For improving the classification precision impacted due by complex computations, this article introduces an assimilated method incorporating flock optimization and conventional deep learning. Deep learning trains the classification system through the best‐fit solution generated by the flock optimization. The features from the input data are first identified for which an initial population is initiated. The identified features are classified based on their leap‐up behaviour; this behaviour is induced if the data feature modifies the actual representation. If the data feature shows up over‐fitting behaviour, then it is classified as abnormal and is discarded. Therefore the objective function is to identify the best‐fitting data feature from the maximum flock members showing similar leap‐up behaviour. This output is used for training the deep learning paradigm for classifying precision‐less and high features. The precision is determined using existing classified data that matches better the flock output. If the classified data is under less precision, then the leap‐up behaviours' objective is tuned to eliminate over‐fitting inputs. Therefore, the variable features are thwarted for preventing precision degradation for varying diabetics' clinical observed data. The introduced system maximize the recognition accuracy by 8.47% and minimize the complexity by 7.65%.</description><identifier>ISSN: 0266-4720</identifier><identifier>EISSN: 1468-0394</identifier><identifier>DOI: 10.1111/exsy.13305</identifier><language>eng</language><publisher>Oxford: Blackwell Publishing Ltd</publisher><subject>Classification ; Complexity ; Convergence ; Deep learning ; Diabetes ; diabetes data ; Feature extraction ; flock optimization ; Optimization</subject><ispartof>Expert systems, 2025-01, Vol.42 (1), p.n/a</ispartof><rights>2023 John Wiley &amp; Sons Ltd.</rights><rights>2025 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2605-8da346f4945c157ef06965df754d5c765e1f95d22ef0685cdaae1e3b12cc1603</cites><orcidid>0000-0002-7445-2216</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fexsy.13305$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fexsy.13305$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Balasubramaniyan, Divager</creatorcontrib><creatorcontrib>Husin, Nor Azura</creatorcontrib><creatorcontrib>Mustapha, Norwati</creatorcontrib><creatorcontrib>Sharef, Nurfadhlina Mohd</creatorcontrib><creatorcontrib>Mohd Aris, Teh Noranis</creatorcontrib><title>Flock optimization induced deep learning for improved diabetes disease classification</title><title>Expert systems</title><description>Diabetic disease classification requires a precise understanding of the clinical inputs and their intensity as observed through different stages. Automated and machine‐centric classification requires validated data handling and non‐converging inputs. For improving the classification precision impacted due by complex computations, this article introduces an assimilated method incorporating flock optimization and conventional deep learning. Deep learning trains the classification system through the best‐fit solution generated by the flock optimization. The features from the input data are first identified for which an initial population is initiated. The identified features are classified based on their leap‐up behaviour; this behaviour is induced if the data feature modifies the actual representation. If the data feature shows up over‐fitting behaviour, then it is classified as abnormal and is discarded. Therefore the objective function is to identify the best‐fitting data feature from the maximum flock members showing similar leap‐up behaviour. This output is used for training the deep learning paradigm for classifying precision‐less and high features. The precision is determined using existing classified data that matches better the flock output. If the classified data is under less precision, then the leap‐up behaviours' objective is tuned to eliminate over‐fitting inputs. Therefore, the variable features are thwarted for preventing precision degradation for varying diabetics' clinical observed data. The introduced system maximize the recognition accuracy by 8.47% and minimize the complexity by 7.65%.</description><subject>Classification</subject><subject>Complexity</subject><subject>Convergence</subject><subject>Deep learning</subject><subject>Diabetes</subject><subject>diabetes data</subject><subject>Feature extraction</subject><subject>flock optimization</subject><subject>Optimization</subject><issn>0266-4720</issn><issn>1468-0394</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><recordid>eNp9kEFPwzAMhSMEEmNw4RdU4obUEbdJ2h7RtAHSJA4MCU5Rljgoo2tL0gHl19OunPHFlt7nZ-sRcgl0Bn3d4HfoZpCmlB-RCTCRxzQt2DGZ0ESImGUJPSVnIWwppZBlYkKel2Wt36O6ad3O_ajW1VXkKrPXaCKD2EQlKl-56i2ytY_crvH15yA5tcEWQz8EVAEjXaoQnHX6YHFOTqwqA1789SlZLxfr-X28erx7mN-uYp0IyuPcqJQJywrGNfAMLRWF4MZmnBmuM8ERbMFNkgxKzrVRCgHTDSRag6DplFyNtv1XH3sMrdzWe1_1F2UKjOecAoieuh4p7esQPFrZeLdTvpNA5ZCaHFKTh9R6GEb4y5XY_UPKxcvT67jzC1gycK0</recordid><startdate>202501</startdate><enddate>202501</enddate><creator>Balasubramaniyan, Divager</creator><creator>Husin, Nor Azura</creator><creator>Mustapha, Norwati</creator><creator>Sharef, Nurfadhlina Mohd</creator><creator>Mohd Aris, Teh Noranis</creator><general>Blackwell Publishing Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-7445-2216</orcidid></search><sort><creationdate>202501</creationdate><title>Flock optimization induced deep learning for improved diabetes disease classification</title><author>Balasubramaniyan, Divager ; Husin, Nor Azura ; Mustapha, Norwati ; Sharef, Nurfadhlina Mohd ; Mohd Aris, Teh Noranis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2605-8da346f4945c157ef06965df754d5c765e1f95d22ef0685cdaae1e3b12cc1603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Classification</topic><topic>Complexity</topic><topic>Convergence</topic><topic>Deep learning</topic><topic>Diabetes</topic><topic>diabetes data</topic><topic>Feature extraction</topic><topic>flock optimization</topic><topic>Optimization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Balasubramaniyan, Divager</creatorcontrib><creatorcontrib>Husin, Nor Azura</creatorcontrib><creatorcontrib>Mustapha, Norwati</creatorcontrib><creatorcontrib>Sharef, Nurfadhlina Mohd</creatorcontrib><creatorcontrib>Mohd Aris, Teh Noranis</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Expert systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Balasubramaniyan, Divager</au><au>Husin, Nor Azura</au><au>Mustapha, Norwati</au><au>Sharef, Nurfadhlina Mohd</au><au>Mohd Aris, Teh Noranis</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Flock optimization induced deep learning for improved diabetes disease classification</atitle><jtitle>Expert systems</jtitle><date>2025-01</date><risdate>2025</risdate><volume>42</volume><issue>1</issue><epage>n/a</epage><issn>0266-4720</issn><eissn>1468-0394</eissn><abstract>Diabetic disease classification requires a precise understanding of the clinical inputs and their intensity as observed through different stages. Automated and machine‐centric classification requires validated data handling and non‐converging inputs. For improving the classification precision impacted due by complex computations, this article introduces an assimilated method incorporating flock optimization and conventional deep learning. Deep learning trains the classification system through the best‐fit solution generated by the flock optimization. The features from the input data are first identified for which an initial population is initiated. The identified features are classified based on their leap‐up behaviour; this behaviour is induced if the data feature modifies the actual representation. If the data feature shows up over‐fitting behaviour, then it is classified as abnormal and is discarded. Therefore the objective function is to identify the best‐fitting data feature from the maximum flock members showing similar leap‐up behaviour. This output is used for training the deep learning paradigm for classifying precision‐less and high features. The precision is determined using existing classified data that matches better the flock output. If the classified data is under less precision, then the leap‐up behaviours' objective is tuned to eliminate over‐fitting inputs. Therefore, the variable features are thwarted for preventing precision degradation for varying diabetics' clinical observed data. The introduced system maximize the recognition accuracy by 8.47% and minimize the complexity by 7.65%.</abstract><cop>Oxford</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/exsy.13305</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-7445-2216</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0266-4720
ispartof Expert systems, 2025-01, Vol.42 (1), p.n/a
issn 0266-4720
1468-0394
language eng
recordid cdi_proquest_journals_3145850116
source Wiley Online Library Journals Frontfile Complete
subjects Classification
Complexity
Convergence
Deep learning
Diabetes
diabetes data
Feature extraction
flock optimization
Optimization
title Flock optimization induced deep learning for improved diabetes disease classification
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T07%3A41%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Flock%20optimization%20induced%20deep%20learning%20for%20improved%20diabetes%20disease%20classification&rft.jtitle=Expert%20systems&rft.au=Balasubramaniyan,%20Divager&rft.date=2025-01&rft.volume=42&rft.issue=1&rft.epage=n/a&rft.issn=0266-4720&rft.eissn=1468-0394&rft_id=info:doi/10.1111/exsy.13305&rft_dat=%3Cproquest_cross%3E3145850116%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3145850116&rft_id=info:pmid/&rfr_iscdi=true