Rapid mapping of land cover changes in tropical watershed in Indonesia using Google Earth Engine

Besitang watershed is one of the tropical watersheds in Indonesia. In the upstream area, Besitang watershed is part of the Gunung Leuser National Park, a conservation forest abundant with diverse wildlife, including primates and terrestrial mammals. Studying land cover changes in Besitang watershed...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IOP conference series. Earth and environmental science 2024-12, Vol.1414 (1), p.12077
Hauptverfasser: Fariz, Trida Ridho, Suhardono, Sapta, Fadhilla, Suri
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 12077
container_title IOP conference series. Earth and environmental science
container_volume 1414
creator Fariz, Trida Ridho
Suhardono, Sapta
Fadhilla, Suri
description Besitang watershed is one of the tropical watersheds in Indonesia. In the upstream area, Besitang watershed is part of the Gunung Leuser National Park, a conservation forest abundant with diverse wildlife, including primates and terrestrial mammals. Studying land cover changes in Besitang watershed is crucial. A challenge in studying land cover changes in tropical watersheds is cloud cover, thus necessitating land cover mapping studies in Besitang watershed using Google Earth Engine (GEE). GEE is a platform for processing geo-big data, providing extensive and cloud-free satellite image data. Therefore, this study aims to map land cover in Besitang watershed using machine learning-based classification on GEE. The land cover mapping process in Besitang watershed utilizes Landsat 8 satellite imagery. The input data includes bands 1 to 7 of Landsat 8 imagery and image transformations such as NDVI, NDWI, NDBI, BSI, EVI, NDTI, SATVI. The years selected for analysis are 2001 and 2021, with machine learning techniques tested including CART and Random Forest (RF). The results of this study indicate that RF is the best machine learning method for mapping land cover in Besitang watershed, using an image combination consisting of Band 2, Band 3, Band 4, Band 5, Band 6, Band, NDVI, NDWI, NDBI, BSI. The mapping results show a forest area change of approximately 352326.29 hectares, with the majority of changes to plantation.
doi_str_mv 10.1088/1755-1315/1414/1/012077
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3145732748</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3145732748</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1548-9a0523c68859c3d3c1735179799432352db3b9e55c081d992f09cc3b16b2de993</originalsourceid><addsrcrecordid>eNqFkN9LwzAQx4soOKd_gwGffKjNNc3SPMqoczAQ_PEc0yTtOrqkJp3if-9KZSIIPt1x9_3cwSeKLgHfAM7zBBilMRCgCWSQJZBgSDFjR9HksDk-9JidRmchbDCesYzwSfT6KLtGo63susbWyFWolVYj5d6NR2otbW0CaizqvesaJVv0IXvjw9roYbq02lkTGol2YcAXztWtQYX0_RoVtm6sOY9OKtkGc_Fdp9HLXfE8v49XD4vl_HYVK6BZHnOJaUrULM8pV0QTBYxQYJxxnpGU0FSXpOSGUoVz0JynFeZKkRJmZaoN52QaXY13O-_edib0YuN23u5fCgIZZSRlWb5PsTGlvAvBm0p0vtlK_ykAi0GnGESJQZoYdAoQo849SUaycd3P6f-p6z-oonj6nROdrsgXuyaCvw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3145732748</pqid></control><display><type>article</type><title>Rapid mapping of land cover changes in tropical watershed in Indonesia using Google Earth Engine</title><source>IOP Publishing Free Content</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>IOPscience extra</source><creator>Fariz, Trida Ridho ; Suhardono, Sapta ; Fadhilla, Suri</creator><creatorcontrib>Fariz, Trida Ridho ; Suhardono, Sapta ; Fadhilla, Suri</creatorcontrib><description>Besitang watershed is one of the tropical watersheds in Indonesia. In the upstream area, Besitang watershed is part of the Gunung Leuser National Park, a conservation forest abundant with diverse wildlife, including primates and terrestrial mammals. Studying land cover changes in Besitang watershed is crucial. A challenge in studying land cover changes in tropical watersheds is cloud cover, thus necessitating land cover mapping studies in Besitang watershed using Google Earth Engine (GEE). GEE is a platform for processing geo-big data, providing extensive and cloud-free satellite image data. Therefore, this study aims to map land cover in Besitang watershed using machine learning-based classification on GEE. The land cover mapping process in Besitang watershed utilizes Landsat 8 satellite imagery. The input data includes bands 1 to 7 of Landsat 8 imagery and image transformations such as NDVI, NDWI, NDBI, BSI, EVI, NDTI, SATVI. The years selected for analysis are 2001 and 2021, with machine learning techniques tested including CART and Random Forest (RF). The results of this study indicate that RF is the best machine learning method for mapping land cover in Besitang watershed, using an image combination consisting of Band 2, Band 3, Band 4, Band 5, Band 6, Band, NDVI, NDWI, NDBI, BSI. The mapping results show a forest area change of approximately 352326.29 hectares, with the majority of changes to plantation.</description><identifier>ISSN: 1755-1307</identifier><identifier>EISSN: 1755-1315</identifier><identifier>DOI: 10.1088/1755-1315/1414/1/012077</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Big Data ; Cloud cover ; Forest management ; Land conservation ; Land cover ; Landsat ; Learning algorithms ; Machine learning ; Mapping ; National parks ; Normalized difference vegetative index ; Remote sensing ; Satellite imagery ; Watersheds ; Wildlife ; Wildlife conservation</subject><ispartof>IOP conference series. Earth and environmental science, 2024-12, Vol.1414 (1), p.12077</ispartof><rights>Published under licence by IOP Publishing Ltd</rights><rights>Published under licence by IOP Publishing Ltd. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1548-9a0523c68859c3d3c1735179799432352db3b9e55c081d992f09cc3b16b2de993</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1755-1315/1414/1/012077/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,776,780,27901,27902,38845,38867,53815,53842</link.rule.ids></links><search><creatorcontrib>Fariz, Trida Ridho</creatorcontrib><creatorcontrib>Suhardono, Sapta</creatorcontrib><creatorcontrib>Fadhilla, Suri</creatorcontrib><title>Rapid mapping of land cover changes in tropical watershed in Indonesia using Google Earth Engine</title><title>IOP conference series. Earth and environmental science</title><addtitle>IOP Conf. Ser.: Earth Environ. Sci</addtitle><description>Besitang watershed is one of the tropical watersheds in Indonesia. In the upstream area, Besitang watershed is part of the Gunung Leuser National Park, a conservation forest abundant with diverse wildlife, including primates and terrestrial mammals. Studying land cover changes in Besitang watershed is crucial. A challenge in studying land cover changes in tropical watersheds is cloud cover, thus necessitating land cover mapping studies in Besitang watershed using Google Earth Engine (GEE). GEE is a platform for processing geo-big data, providing extensive and cloud-free satellite image data. Therefore, this study aims to map land cover in Besitang watershed using machine learning-based classification on GEE. The land cover mapping process in Besitang watershed utilizes Landsat 8 satellite imagery. The input data includes bands 1 to 7 of Landsat 8 imagery and image transformations such as NDVI, NDWI, NDBI, BSI, EVI, NDTI, SATVI. The years selected for analysis are 2001 and 2021, with machine learning techniques tested including CART and Random Forest (RF). The results of this study indicate that RF is the best machine learning method for mapping land cover in Besitang watershed, using an image combination consisting of Band 2, Band 3, Band 4, Band 5, Band 6, Band, NDVI, NDWI, NDBI, BSI. The mapping results show a forest area change of approximately 352326.29 hectares, with the majority of changes to plantation.</description><subject>Big Data</subject><subject>Cloud cover</subject><subject>Forest management</subject><subject>Land conservation</subject><subject>Land cover</subject><subject>Landsat</subject><subject>Learning algorithms</subject><subject>Machine learning</subject><subject>Mapping</subject><subject>National parks</subject><subject>Normalized difference vegetative index</subject><subject>Remote sensing</subject><subject>Satellite imagery</subject><subject>Watersheds</subject><subject>Wildlife</subject><subject>Wildlife conservation</subject><issn>1755-1307</issn><issn>1755-1315</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>BENPR</sourceid><recordid>eNqFkN9LwzAQx4soOKd_gwGffKjNNc3SPMqoczAQ_PEc0yTtOrqkJp3if-9KZSIIPt1x9_3cwSeKLgHfAM7zBBilMRCgCWSQJZBgSDFjR9HksDk-9JidRmchbDCesYzwSfT6KLtGo63susbWyFWolVYj5d6NR2otbW0CaizqvesaJVv0IXvjw9roYbq02lkTGol2YcAXztWtQYX0_RoVtm6sOY9OKtkGc_Fdp9HLXfE8v49XD4vl_HYVK6BZHnOJaUrULM8pV0QTBYxQYJxxnpGU0FSXpOSGUoVz0JynFeZKkRJmZaoN52QaXY13O-_edib0YuN23u5fCgIZZSRlWb5PsTGlvAvBm0p0vtlK_ykAi0GnGESJQZoYdAoQo849SUaycd3P6f-p6z-oonj6nROdrsgXuyaCvw</recordid><startdate>20241201</startdate><enddate>20241201</enddate><creator>Fariz, Trida Ridho</creator><creator>Suhardono, Sapta</creator><creator>Fadhilla, Suri</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>COVID</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>PATMY</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PYCSY</scope></search><sort><creationdate>20241201</creationdate><title>Rapid mapping of land cover changes in tropical watershed in Indonesia using Google Earth Engine</title><author>Fariz, Trida Ridho ; Suhardono, Sapta ; Fadhilla, Suri</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1548-9a0523c68859c3d3c1735179799432352db3b9e55c081d992f09cc3b16b2de993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Big Data</topic><topic>Cloud cover</topic><topic>Forest management</topic><topic>Land conservation</topic><topic>Land cover</topic><topic>Landsat</topic><topic>Learning algorithms</topic><topic>Machine learning</topic><topic>Mapping</topic><topic>National parks</topic><topic>Normalized difference vegetative index</topic><topic>Remote sensing</topic><topic>Satellite imagery</topic><topic>Watersheds</topic><topic>Wildlife</topic><topic>Wildlife conservation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fariz, Trida Ridho</creatorcontrib><creatorcontrib>Suhardono, Sapta</creatorcontrib><creatorcontrib>Fadhilla, Suri</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Environmental Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Environmental Science Collection</collection><jtitle>IOP conference series. Earth and environmental science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fariz, Trida Ridho</au><au>Suhardono, Sapta</au><au>Fadhilla, Suri</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rapid mapping of land cover changes in tropical watershed in Indonesia using Google Earth Engine</atitle><jtitle>IOP conference series. Earth and environmental science</jtitle><addtitle>IOP Conf. Ser.: Earth Environ. Sci</addtitle><date>2024-12-01</date><risdate>2024</risdate><volume>1414</volume><issue>1</issue><spage>12077</spage><pages>12077-</pages><issn>1755-1307</issn><eissn>1755-1315</eissn><abstract>Besitang watershed is one of the tropical watersheds in Indonesia. In the upstream area, Besitang watershed is part of the Gunung Leuser National Park, a conservation forest abundant with diverse wildlife, including primates and terrestrial mammals. Studying land cover changes in Besitang watershed is crucial. A challenge in studying land cover changes in tropical watersheds is cloud cover, thus necessitating land cover mapping studies in Besitang watershed using Google Earth Engine (GEE). GEE is a platform for processing geo-big data, providing extensive and cloud-free satellite image data. Therefore, this study aims to map land cover in Besitang watershed using machine learning-based classification on GEE. The land cover mapping process in Besitang watershed utilizes Landsat 8 satellite imagery. The input data includes bands 1 to 7 of Landsat 8 imagery and image transformations such as NDVI, NDWI, NDBI, BSI, EVI, NDTI, SATVI. The years selected for analysis are 2001 and 2021, with machine learning techniques tested including CART and Random Forest (RF). The results of this study indicate that RF is the best machine learning method for mapping land cover in Besitang watershed, using an image combination consisting of Band 2, Band 3, Band 4, Band 5, Band 6, Band, NDVI, NDWI, NDBI, BSI. The mapping results show a forest area change of approximately 352326.29 hectares, with the majority of changes to plantation.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1755-1315/1414/1/012077</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1755-1307
ispartof IOP conference series. Earth and environmental science, 2024-12, Vol.1414 (1), p.12077
issn 1755-1307
1755-1315
language eng
recordid cdi_proquest_journals_3145732748
source IOP Publishing Free Content; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; IOPscience extra
subjects Big Data
Cloud cover
Forest management
Land conservation
Land cover
Landsat
Learning algorithms
Machine learning
Mapping
National parks
Normalized difference vegetative index
Remote sensing
Satellite imagery
Watersheds
Wildlife
Wildlife conservation
title Rapid mapping of land cover changes in tropical watershed in Indonesia using Google Earth Engine
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T19%3A58%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rapid%20mapping%20of%20land%20cover%20changes%20in%20tropical%20watershed%20in%20Indonesia%20using%20Google%20Earth%20Engine&rft.jtitle=IOP%20conference%20series.%20Earth%20and%20environmental%20science&rft.au=Fariz,%20Trida%20Ridho&rft.date=2024-12-01&rft.volume=1414&rft.issue=1&rft.spage=12077&rft.pages=12077-&rft.issn=1755-1307&rft.eissn=1755-1315&rft_id=info:doi/10.1088/1755-1315/1414/1/012077&rft_dat=%3Cproquest_cross%3E3145732748%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3145732748&rft_id=info:pmid/&rfr_iscdi=true