Ultrafast formation of porosity and heterogeneous structures on 2D oxides via momentary photothermal effect

2D metal oxides have attracted significant interest in numerous scientific research fields owing to their exceptional physicochemical properties derived from unique crystal structures and surfaces. However, unfortunately, there are still challenges to achieving fast and sensitive chemical sensing us...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2025-01, Vol.13 (1), p.561-572
Hauptverfasser: Ryu, Ahrom, Park, Bo-In, Hyun-Jae, Lee, Jung-Won, An, Jeong-Jun, Kim, Nahm, Sahn, Kim, Seong H, Lee, Byungju, Ji-Won, Choi, Ji-Soo, Jang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 572
container_issue 1
container_start_page 561
container_title Journal of materials chemistry. A, Materials for energy and sustainability
container_volume 13
creator Ryu, Ahrom
Park, Bo-In
Hyun-Jae, Lee
Jung-Won, An
Jeong-Jun, Kim
Nahm, Sahn
Kim, Seong H
Lee, Byungju
Ji-Won, Choi
Ji-Soo, Jang
description 2D metal oxides have attracted significant interest in numerous scientific research fields owing to their exceptional physicochemical properties derived from unique crystal structures and surfaces. However, unfortunately, there are still challenges to achieving fast and sensitive chemical sensing using 2D metal oxides due to their poor surface porosity. Here, a simple but powerful synthetic method for highly porous as well as reduced 2D metal oxides is suggested through a 2D oxide exfoliation approach combined with flash-thermal shock (FTS). The molecular thick-level 2D Ti0.87O2 nanosheets are simply synthesized by ion-exchange exfoliation and a subsequent ultra-fast FTS (7.5 ms) process, resulting in simultaneous formation of uniform pores and reduced Ti0.87O2−x on the 2D Ti0.87O2 surface. In this process, the heterojunctions play a crucial role in enhancing the sensitivity by facilitating charge transfer and improving the electrical properties. Density functional theory calculations and ex situ TEM analysis elucidate that the fast phase transformation of 2D Ti0.87O2 is a key driving force of porosity and reduced Ti0.87O2−x formation. Based on these features, porous 2D Ti0.87O2 exhibits an exceptional HCHO sensing characteristic including outstanding reversibility and sensitivity even at room temperature.
doi_str_mv 10.1039/d4ta06114d
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3145643231</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3145643231</sourcerecordid><originalsourceid>FETCH-LOGICAL-p113t-8588153327e9c383b222f533022ab5c8e45ec9f27713c8f726818e3e487afffa3</originalsourceid><addsrcrecordid>eNo9jU9Lw0AUxBdRsNRe_AQLnqO7-zbJ5ij1T4WCF3su2-StTU3z4u6L2G9vQHEuMz8YZoS41upWK6juGsteFVrb5kzMjMpVVtqqOP_Pzl2KRUoHNckpVVTVTHxsOo4--MQyUDx6bqmXFORAkVLLJ-n7Ru6RMdI79khjkonjWPMYMcmpax4kfbfNBF-tl0c6Ys8-nuSwJybe47TZSQwBa74SF8F3CRd_Phebp8e35Spbvz6_LO_X2aA1cOZy53QOYEqsanCwM8aEiZUxfpfXDm2OdRVMWWqoXShN4bRDQOtKH0LwMBc3v7tDpM8RE28PNMZ-utyCtnlhwYCGH-mjW8Y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3145643231</pqid></control><display><type>article</type><title>Ultrafast formation of porosity and heterogeneous structures on 2D oxides via momentary photothermal effect</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Ryu, Ahrom ; Park, Bo-In ; Hyun-Jae, Lee ; Jung-Won, An ; Jeong-Jun, Kim ; Nahm, Sahn ; Kim, Seong H ; Lee, Byungju ; Ji-Won, Choi ; Ji-Soo, Jang</creator><creatorcontrib>Ryu, Ahrom ; Park, Bo-In ; Hyun-Jae, Lee ; Jung-Won, An ; Jeong-Jun, Kim ; Nahm, Sahn ; Kim, Seong H ; Lee, Byungju ; Ji-Won, Choi ; Ji-Soo, Jang</creatorcontrib><description>2D metal oxides have attracted significant interest in numerous scientific research fields owing to their exceptional physicochemical properties derived from unique crystal structures and surfaces. However, unfortunately, there are still challenges to achieving fast and sensitive chemical sensing using 2D metal oxides due to their poor surface porosity. Here, a simple but powerful synthetic method for highly porous as well as reduced 2D metal oxides is suggested through a 2D oxide exfoliation approach combined with flash-thermal shock (FTS). The molecular thick-level 2D Ti0.87O2 nanosheets are simply synthesized by ion-exchange exfoliation and a subsequent ultra-fast FTS (7.5 ms) process, resulting in simultaneous formation of uniform pores and reduced Ti0.87O2−x on the 2D Ti0.87O2 surface. In this process, the heterojunctions play a crucial role in enhancing the sensitivity by facilitating charge transfer and improving the electrical properties. Density functional theory calculations and ex situ TEM analysis elucidate that the fast phase transformation of 2D Ti0.87O2 is a key driving force of porosity and reduced Ti0.87O2−x formation. Based on these features, porous 2D Ti0.87O2 exhibits an exceptional HCHO sensing characteristic including outstanding reversibility and sensitivity even at room temperature.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/d4ta06114d</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Charge transfer ; Chemical perception ; Chemical synthesis ; Chemoreception ; Density functional theory ; Electrical properties ; Exfoliation ; Heterojunctions ; Ion exchange ; Metal oxides ; Oxides ; Phase transitions ; Physicochemical properties ; Porosity ; Room temperature ; Sensitivity analysis ; Thermal shock ; Two dimensional analysis ; Two dimensional materials</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2025-01, Vol.13 (1), p.561-572</ispartof><rights>Copyright Royal Society of Chemistry 2025</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Ryu, Ahrom</creatorcontrib><creatorcontrib>Park, Bo-In</creatorcontrib><creatorcontrib>Hyun-Jae, Lee</creatorcontrib><creatorcontrib>Jung-Won, An</creatorcontrib><creatorcontrib>Jeong-Jun, Kim</creatorcontrib><creatorcontrib>Nahm, Sahn</creatorcontrib><creatorcontrib>Kim, Seong H</creatorcontrib><creatorcontrib>Lee, Byungju</creatorcontrib><creatorcontrib>Ji-Won, Choi</creatorcontrib><creatorcontrib>Ji-Soo, Jang</creatorcontrib><title>Ultrafast formation of porosity and heterogeneous structures on 2D oxides via momentary photothermal effect</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>2D metal oxides have attracted significant interest in numerous scientific research fields owing to their exceptional physicochemical properties derived from unique crystal structures and surfaces. However, unfortunately, there are still challenges to achieving fast and sensitive chemical sensing using 2D metal oxides due to their poor surface porosity. Here, a simple but powerful synthetic method for highly porous as well as reduced 2D metal oxides is suggested through a 2D oxide exfoliation approach combined with flash-thermal shock (FTS). The molecular thick-level 2D Ti0.87O2 nanosheets are simply synthesized by ion-exchange exfoliation and a subsequent ultra-fast FTS (7.5 ms) process, resulting in simultaneous formation of uniform pores and reduced Ti0.87O2−x on the 2D Ti0.87O2 surface. In this process, the heterojunctions play a crucial role in enhancing the sensitivity by facilitating charge transfer and improving the electrical properties. Density functional theory calculations and ex situ TEM analysis elucidate that the fast phase transformation of 2D Ti0.87O2 is a key driving force of porosity and reduced Ti0.87O2−x formation. Based on these features, porous 2D Ti0.87O2 exhibits an exceptional HCHO sensing characteristic including outstanding reversibility and sensitivity even at room temperature.</description><subject>Charge transfer</subject><subject>Chemical perception</subject><subject>Chemical synthesis</subject><subject>Chemoreception</subject><subject>Density functional theory</subject><subject>Electrical properties</subject><subject>Exfoliation</subject><subject>Heterojunctions</subject><subject>Ion exchange</subject><subject>Metal oxides</subject><subject>Oxides</subject><subject>Phase transitions</subject><subject>Physicochemical properties</subject><subject>Porosity</subject><subject>Room temperature</subject><subject>Sensitivity analysis</subject><subject>Thermal shock</subject><subject>Two dimensional analysis</subject><subject>Two dimensional materials</subject><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><recordid>eNo9jU9Lw0AUxBdRsNRe_AQLnqO7-zbJ5ij1T4WCF3su2-StTU3z4u6L2G9vQHEuMz8YZoS41upWK6juGsteFVrb5kzMjMpVVtqqOP_Pzl2KRUoHNckpVVTVTHxsOo4--MQyUDx6bqmXFORAkVLLJ-n7Ru6RMdI79khjkonjWPMYMcmpax4kfbfNBF-tl0c6Ys8-nuSwJybe47TZSQwBa74SF8F3CRd_Phebp8e35Spbvz6_LO_X2aA1cOZy53QOYEqsanCwM8aEiZUxfpfXDm2OdRVMWWqoXShN4bRDQOtKH0LwMBc3v7tDpM8RE28PNMZ-utyCtnlhwYCGH-mjW8Y</recordid><startdate>20250101</startdate><enddate>20250101</enddate><creator>Ryu, Ahrom</creator><creator>Park, Bo-In</creator><creator>Hyun-Jae, Lee</creator><creator>Jung-Won, An</creator><creator>Jeong-Jun, Kim</creator><creator>Nahm, Sahn</creator><creator>Kim, Seong H</creator><creator>Lee, Byungju</creator><creator>Ji-Won, Choi</creator><creator>Ji-Soo, Jang</creator><general>Royal Society of Chemistry</general><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope></search><sort><creationdate>20250101</creationdate><title>Ultrafast formation of porosity and heterogeneous structures on 2D oxides via momentary photothermal effect</title><author>Ryu, Ahrom ; Park, Bo-In ; Hyun-Jae, Lee ; Jung-Won, An ; Jeong-Jun, Kim ; Nahm, Sahn ; Kim, Seong H ; Lee, Byungju ; Ji-Won, Choi ; Ji-Soo, Jang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p113t-8588153327e9c383b222f533022ab5c8e45ec9f27713c8f726818e3e487afffa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Charge transfer</topic><topic>Chemical perception</topic><topic>Chemical synthesis</topic><topic>Chemoreception</topic><topic>Density functional theory</topic><topic>Electrical properties</topic><topic>Exfoliation</topic><topic>Heterojunctions</topic><topic>Ion exchange</topic><topic>Metal oxides</topic><topic>Oxides</topic><topic>Phase transitions</topic><topic>Physicochemical properties</topic><topic>Porosity</topic><topic>Room temperature</topic><topic>Sensitivity analysis</topic><topic>Thermal shock</topic><topic>Two dimensional analysis</topic><topic>Two dimensional materials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ryu, Ahrom</creatorcontrib><creatorcontrib>Park, Bo-In</creatorcontrib><creatorcontrib>Hyun-Jae, Lee</creatorcontrib><creatorcontrib>Jung-Won, An</creatorcontrib><creatorcontrib>Jeong-Jun, Kim</creatorcontrib><creatorcontrib>Nahm, Sahn</creatorcontrib><creatorcontrib>Kim, Seong H</creatorcontrib><creatorcontrib>Lee, Byungju</creatorcontrib><creatorcontrib>Ji-Won, Choi</creatorcontrib><creatorcontrib>Ji-Soo, Jang</creatorcontrib><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ryu, Ahrom</au><au>Park, Bo-In</au><au>Hyun-Jae, Lee</au><au>Jung-Won, An</au><au>Jeong-Jun, Kim</au><au>Nahm, Sahn</au><au>Kim, Seong H</au><au>Lee, Byungju</au><au>Ji-Won, Choi</au><au>Ji-Soo, Jang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ultrafast formation of porosity and heterogeneous structures on 2D oxides via momentary photothermal effect</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2025-01-01</date><risdate>2025</risdate><volume>13</volume><issue>1</issue><spage>561</spage><epage>572</epage><pages>561-572</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>2D metal oxides have attracted significant interest in numerous scientific research fields owing to their exceptional physicochemical properties derived from unique crystal structures and surfaces. However, unfortunately, there are still challenges to achieving fast and sensitive chemical sensing using 2D metal oxides due to their poor surface porosity. Here, a simple but powerful synthetic method for highly porous as well as reduced 2D metal oxides is suggested through a 2D oxide exfoliation approach combined with flash-thermal shock (FTS). The molecular thick-level 2D Ti0.87O2 nanosheets are simply synthesized by ion-exchange exfoliation and a subsequent ultra-fast FTS (7.5 ms) process, resulting in simultaneous formation of uniform pores and reduced Ti0.87O2−x on the 2D Ti0.87O2 surface. In this process, the heterojunctions play a crucial role in enhancing the sensitivity by facilitating charge transfer and improving the electrical properties. Density functional theory calculations and ex situ TEM analysis elucidate that the fast phase transformation of 2D Ti0.87O2 is a key driving force of porosity and reduced Ti0.87O2−x formation. Based on these features, porous 2D Ti0.87O2 exhibits an exceptional HCHO sensing characteristic including outstanding reversibility and sensitivity even at room temperature.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d4ta06114d</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2050-7488
ispartof Journal of materials chemistry. A, Materials for energy and sustainability, 2025-01, Vol.13 (1), p.561-572
issn 2050-7488
2050-7496
language eng
recordid cdi_proquest_journals_3145643231
source Royal Society Of Chemistry Journals 2008-
subjects Charge transfer
Chemical perception
Chemical synthesis
Chemoreception
Density functional theory
Electrical properties
Exfoliation
Heterojunctions
Ion exchange
Metal oxides
Oxides
Phase transitions
Physicochemical properties
Porosity
Room temperature
Sensitivity analysis
Thermal shock
Two dimensional analysis
Two dimensional materials
title Ultrafast formation of porosity and heterogeneous structures on 2D oxides via momentary photothermal effect
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T09%3A20%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ultrafast%20formation%20of%20porosity%20and%20heterogeneous%20structures%20on%202D%20oxides%20via%20momentary%20photothermal%20effect&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Ryu,%20Ahrom&rft.date=2025-01-01&rft.volume=13&rft.issue=1&rft.spage=561&rft.epage=572&rft.pages=561-572&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/d4ta06114d&rft_dat=%3Cproquest%3E3145643231%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3145643231&rft_id=info:pmid/&rfr_iscdi=true