The embedded feature selection method using ANT colony optimization with structured sparsity norms
Feature selection is important in many machine learning applications. Our results demonstrate that it is not necessary to use all features of a dataset to perform classification and achieve lower classification error, which leads to higher accuracy. By selecting meaningful features and reducing the...
Gespeichert in:
Veröffentlicht in: | Computing 2025, Vol.107 (1), p.29, Article 29 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Schreiben Sie den ersten Kommentar!