Periodic waveguides revisited: Radiation conditions, limiting absorption principles, and the space of bounded solutions
We study the Helmholtz equation with periodic coefficients in a closed waveguide. A functional analytic approach is used to formulate and solve the radiation problem in a self‐contained exposition. In this context, we simplify the non‐degeneracy assumption on the frequency. Limiting absorption princ...
Gespeichert in:
Veröffentlicht in: | Mathematical methods in the applied sciences 2025-01, Vol.48 (2), p.2267-2293 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2293 |
---|---|
container_issue | 2 |
container_start_page | 2267 |
container_title | Mathematical methods in the applied sciences |
container_volume | 48 |
creator | Kirsch, A. Schweizer, B. |
description | We study the Helmholtz equation with periodic coefficients in a closed waveguide. A functional analytic approach is used to formulate and solve the radiation problem in a self‐contained exposition. In this context, we simplify the non‐degeneracy assumption on the frequency. Limiting absorption principles (LAPs) are studied, and the radiation condition corresponding to the chosen LAP is derived; we include an example to show different LAPs lead, in general, to different solutions of the radiation problem. Finally, we characterize the set of all bounded solutions to the homogeneous problem. |
doi_str_mv | 10.1002/mma.10435 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3144970559</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3144970559</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2225-2a07b1a30f1ae41780b888801cfa8ad485db98402c23261ea194b4ef654a31f23</originalsourceid><addsrcrecordid>eNp1kE9PwzAMxSMEEmNw4BtE4oREWZyma8ttmvgnbQIhOFduko5MbVOSdtO-PdnGFV_8pPezLT9CroHdA2N80jQYhIiTEzIClucRiHR6SkYMUhYJDuKcXHi_ZoxlAHxEtu_aGauMpFvc6NVglPbU6Y3xptfqgX6gMtgb21JpW2X2yt_R2jRBtiuKpbeuO_idM600Xa2Dj62i_bemvkOpqa1oaYdWaUW9rYfDjktyVmHt9dVfH5Ovp8fP-Uu0eHt-nc8WkeScJxFHlpaAMasAtYA0Y2UWioGsMEMlskSVeSYYlzzmU9AIuSiFrqaJwBgqHo_JzXFv5-zPoH1frO3g2nCyiEGIPGVJkgfq9khJZ713uirCNw26XQGs2OdahFyLQ66BnRzZran17n-wWC5nx4lflHd6_w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3144970559</pqid></control><display><type>article</type><title>Periodic waveguides revisited: Radiation conditions, limiting absorption principles, and the space of bounded solutions</title><source>Wiley Online Library</source><creator>Kirsch, A. ; Schweizer, B.</creator><creatorcontrib>Kirsch, A. ; Schweizer, B.</creatorcontrib><description>We study the Helmholtz equation with periodic coefficients in a closed waveguide. A functional analytic approach is used to formulate and solve the radiation problem in a self‐contained exposition. In this context, we simplify the non‐degeneracy assumption on the frequency. Limiting absorption principles (LAPs) are studied, and the radiation condition corresponding to the chosen LAP is derived; we include an example to show different LAPs lead, in general, to different solutions of the radiation problem. Finally, we characterize the set of all bounded solutions to the homogeneous problem.</description><identifier>ISSN: 0170-4214</identifier><identifier>EISSN: 1099-1476</identifier><identifier>DOI: 10.1002/mma.10435</identifier><language>eng</language><publisher>Freiburg: Wiley Subscription Services, Inc</publisher><subject>Absorption ; Constraining ; Helmholtz equation ; Helmholtz equations ; limiting absorption principle ; radiation condition ; waveguide ; Waveguides</subject><ispartof>Mathematical methods in the applied sciences, 2025-01, Vol.48 (2), p.2267-2293</ispartof><rights>2024 The Author(s). published by John Wiley & Sons Ltd.</rights><rights>2024. This article is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2225-2a07b1a30f1ae41780b888801cfa8ad485db98402c23261ea194b4ef654a31f23</cites><orcidid>0000-0003-3578-7504</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmma.10435$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmma.10435$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Kirsch, A.</creatorcontrib><creatorcontrib>Schweizer, B.</creatorcontrib><title>Periodic waveguides revisited: Radiation conditions, limiting absorption principles, and the space of bounded solutions</title><title>Mathematical methods in the applied sciences</title><description>We study the Helmholtz equation with periodic coefficients in a closed waveguide. A functional analytic approach is used to formulate and solve the radiation problem in a self‐contained exposition. In this context, we simplify the non‐degeneracy assumption on the frequency. Limiting absorption principles (LAPs) are studied, and the radiation condition corresponding to the chosen LAP is derived; we include an example to show different LAPs lead, in general, to different solutions of the radiation problem. Finally, we characterize the set of all bounded solutions to the homogeneous problem.</description><subject>Absorption</subject><subject>Constraining</subject><subject>Helmholtz equation</subject><subject>Helmholtz equations</subject><subject>limiting absorption principle</subject><subject>radiation condition</subject><subject>waveguide</subject><subject>Waveguides</subject><issn>0170-4214</issn><issn>1099-1476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNp1kE9PwzAMxSMEEmNw4BtE4oREWZyma8ttmvgnbQIhOFduko5MbVOSdtO-PdnGFV_8pPezLT9CroHdA2N80jQYhIiTEzIClucRiHR6SkYMUhYJDuKcXHi_ZoxlAHxEtu_aGauMpFvc6NVglPbU6Y3xptfqgX6gMtgb21JpW2X2yt_R2jRBtiuKpbeuO_idM600Xa2Dj62i_bemvkOpqa1oaYdWaUW9rYfDjktyVmHt9dVfH5Ovp8fP-Uu0eHt-nc8WkeScJxFHlpaAMasAtYA0Y2UWioGsMEMlskSVeSYYlzzmU9AIuSiFrqaJwBgqHo_JzXFv5-zPoH1frO3g2nCyiEGIPGVJkgfq9khJZ713uirCNw26XQGs2OdahFyLQ66BnRzZran17n-wWC5nx4lflHd6_w</recordid><startdate>20250130</startdate><enddate>20250130</enddate><creator>Kirsch, A.</creator><creator>Schweizer, B.</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><orcidid>https://orcid.org/0000-0003-3578-7504</orcidid></search><sort><creationdate>20250130</creationdate><title>Periodic waveguides revisited: Radiation conditions, limiting absorption principles, and the space of bounded solutions</title><author>Kirsch, A. ; Schweizer, B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2225-2a07b1a30f1ae41780b888801cfa8ad485db98402c23261ea194b4ef654a31f23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Absorption</topic><topic>Constraining</topic><topic>Helmholtz equation</topic><topic>Helmholtz equations</topic><topic>limiting absorption principle</topic><topic>radiation condition</topic><topic>waveguide</topic><topic>Waveguides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kirsch, A.</creatorcontrib><creatorcontrib>Schweizer, B.</creatorcontrib><collection>Wiley-Blackwell Open Access Collection</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><jtitle>Mathematical methods in the applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kirsch, A.</au><au>Schweizer, B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Periodic waveguides revisited: Radiation conditions, limiting absorption principles, and the space of bounded solutions</atitle><jtitle>Mathematical methods in the applied sciences</jtitle><date>2025-01-30</date><risdate>2025</risdate><volume>48</volume><issue>2</issue><spage>2267</spage><epage>2293</epage><pages>2267-2293</pages><issn>0170-4214</issn><eissn>1099-1476</eissn><abstract>We study the Helmholtz equation with periodic coefficients in a closed waveguide. A functional analytic approach is used to formulate and solve the radiation problem in a self‐contained exposition. In this context, we simplify the non‐degeneracy assumption on the frequency. Limiting absorption principles (LAPs) are studied, and the radiation condition corresponding to the chosen LAP is derived; we include an example to show different LAPs lead, in general, to different solutions of the radiation problem. Finally, we characterize the set of all bounded solutions to the homogeneous problem.</abstract><cop>Freiburg</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/mma.10435</doi><tpages>27</tpages><orcidid>https://orcid.org/0000-0003-3578-7504</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0170-4214 |
ispartof | Mathematical methods in the applied sciences, 2025-01, Vol.48 (2), p.2267-2293 |
issn | 0170-4214 1099-1476 |
language | eng |
recordid | cdi_proquest_journals_3144970559 |
source | Wiley Online Library |
subjects | Absorption Constraining Helmholtz equation Helmholtz equations limiting absorption principle radiation condition waveguide Waveguides |
title | Periodic waveguides revisited: Radiation conditions, limiting absorption principles, and the space of bounded solutions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T16%3A24%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Periodic%20waveguides%20revisited:%20Radiation%20conditions,%20limiting%20absorption%20principles,%20and%20the%20space%20of%20bounded%20solutions&rft.jtitle=Mathematical%20methods%20in%20the%20applied%20sciences&rft.au=Kirsch,%20A.&rft.date=2025-01-30&rft.volume=48&rft.issue=2&rft.spage=2267&rft.epage=2293&rft.pages=2267-2293&rft.issn=0170-4214&rft.eissn=1099-1476&rft_id=info:doi/10.1002/mma.10435&rft_dat=%3Cproquest_cross%3E3144970559%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3144970559&rft_id=info:pmid/&rfr_iscdi=true |