Periodic waveguides revisited: Radiation conditions, limiting absorption principles, and the space of bounded solutions

We study the Helmholtz equation with periodic coefficients in a closed waveguide. A functional analytic approach is used to formulate and solve the radiation problem in a self‐contained exposition. In this context, we simplify the non‐degeneracy assumption on the frequency. Limiting absorption princ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical methods in the applied sciences 2025-01, Vol.48 (2), p.2267-2293
Hauptverfasser: Kirsch, A., Schweizer, B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2293
container_issue 2
container_start_page 2267
container_title Mathematical methods in the applied sciences
container_volume 48
creator Kirsch, A.
Schweizer, B.
description We study the Helmholtz equation with periodic coefficients in a closed waveguide. A functional analytic approach is used to formulate and solve the radiation problem in a self‐contained exposition. In this context, we simplify the non‐degeneracy assumption on the frequency. Limiting absorption principles (LAPs) are studied, and the radiation condition corresponding to the chosen LAP is derived; we include an example to show different LAPs lead, in general, to different solutions of the radiation problem. Finally, we characterize the set of all bounded solutions to the homogeneous problem.
doi_str_mv 10.1002/mma.10435
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3144970559</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3144970559</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2225-2a07b1a30f1ae41780b888801cfa8ad485db98402c23261ea194b4ef654a31f23</originalsourceid><addsrcrecordid>eNp1kE9PwzAMxSMEEmNw4BtE4oREWZyma8ttmvgnbQIhOFduko5MbVOSdtO-PdnGFV_8pPezLT9CroHdA2N80jQYhIiTEzIClucRiHR6SkYMUhYJDuKcXHi_ZoxlAHxEtu_aGauMpFvc6NVglPbU6Y3xptfqgX6gMtgb21JpW2X2yt_R2jRBtiuKpbeuO_idM600Xa2Dj62i_bemvkOpqa1oaYdWaUW9rYfDjktyVmHt9dVfH5Ovp8fP-Uu0eHt-nc8WkeScJxFHlpaAMasAtYA0Y2UWioGsMEMlskSVeSYYlzzmU9AIuSiFrqaJwBgqHo_JzXFv5-zPoH1frO3g2nCyiEGIPGVJkgfq9khJZ713uirCNw26XQGs2OdahFyLQ66BnRzZran17n-wWC5nx4lflHd6_w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3144970559</pqid></control><display><type>article</type><title>Periodic waveguides revisited: Radiation conditions, limiting absorption principles, and the space of bounded solutions</title><source>Wiley Online Library</source><creator>Kirsch, A. ; Schweizer, B.</creator><creatorcontrib>Kirsch, A. ; Schweizer, B.</creatorcontrib><description>We study the Helmholtz equation with periodic coefficients in a closed waveguide. A functional analytic approach is used to formulate and solve the radiation problem in a self‐contained exposition. In this context, we simplify the non‐degeneracy assumption on the frequency. Limiting absorption principles (LAPs) are studied, and the radiation condition corresponding to the chosen LAP is derived; we include an example to show different LAPs lead, in general, to different solutions of the radiation problem. Finally, we characterize the set of all bounded solutions to the homogeneous problem.</description><identifier>ISSN: 0170-4214</identifier><identifier>EISSN: 1099-1476</identifier><identifier>DOI: 10.1002/mma.10435</identifier><language>eng</language><publisher>Freiburg: Wiley Subscription Services, Inc</publisher><subject>Absorption ; Constraining ; Helmholtz equation ; Helmholtz equations ; limiting absorption principle ; radiation condition ; waveguide ; Waveguides</subject><ispartof>Mathematical methods in the applied sciences, 2025-01, Vol.48 (2), p.2267-2293</ispartof><rights>2024 The Author(s). published by John Wiley &amp; Sons Ltd.</rights><rights>2024. This article is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2225-2a07b1a30f1ae41780b888801cfa8ad485db98402c23261ea194b4ef654a31f23</cites><orcidid>0000-0003-3578-7504</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmma.10435$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmma.10435$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Kirsch, A.</creatorcontrib><creatorcontrib>Schweizer, B.</creatorcontrib><title>Periodic waveguides revisited: Radiation conditions, limiting absorption principles, and the space of bounded solutions</title><title>Mathematical methods in the applied sciences</title><description>We study the Helmholtz equation with periodic coefficients in a closed waveguide. A functional analytic approach is used to formulate and solve the radiation problem in a self‐contained exposition. In this context, we simplify the non‐degeneracy assumption on the frequency. Limiting absorption principles (LAPs) are studied, and the radiation condition corresponding to the chosen LAP is derived; we include an example to show different LAPs lead, in general, to different solutions of the radiation problem. Finally, we characterize the set of all bounded solutions to the homogeneous problem.</description><subject>Absorption</subject><subject>Constraining</subject><subject>Helmholtz equation</subject><subject>Helmholtz equations</subject><subject>limiting absorption principle</subject><subject>radiation condition</subject><subject>waveguide</subject><subject>Waveguides</subject><issn>0170-4214</issn><issn>1099-1476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNp1kE9PwzAMxSMEEmNw4BtE4oREWZyma8ttmvgnbQIhOFduko5MbVOSdtO-PdnGFV_8pPezLT9CroHdA2N80jQYhIiTEzIClucRiHR6SkYMUhYJDuKcXHi_ZoxlAHxEtu_aGauMpFvc6NVglPbU6Y3xptfqgX6gMtgb21JpW2X2yt_R2jRBtiuKpbeuO_idM600Xa2Dj62i_bemvkOpqa1oaYdWaUW9rYfDjktyVmHt9dVfH5Ovp8fP-Uu0eHt-nc8WkeScJxFHlpaAMasAtYA0Y2UWioGsMEMlskSVeSYYlzzmU9AIuSiFrqaJwBgqHo_JzXFv5-zPoH1frO3g2nCyiEGIPGVJkgfq9khJZ713uirCNw26XQGs2OdahFyLQ66BnRzZran17n-wWC5nx4lflHd6_w</recordid><startdate>20250130</startdate><enddate>20250130</enddate><creator>Kirsch, A.</creator><creator>Schweizer, B.</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><orcidid>https://orcid.org/0000-0003-3578-7504</orcidid></search><sort><creationdate>20250130</creationdate><title>Periodic waveguides revisited: Radiation conditions, limiting absorption principles, and the space of bounded solutions</title><author>Kirsch, A. ; Schweizer, B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2225-2a07b1a30f1ae41780b888801cfa8ad485db98402c23261ea194b4ef654a31f23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Absorption</topic><topic>Constraining</topic><topic>Helmholtz equation</topic><topic>Helmholtz equations</topic><topic>limiting absorption principle</topic><topic>radiation condition</topic><topic>waveguide</topic><topic>Waveguides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kirsch, A.</creatorcontrib><creatorcontrib>Schweizer, B.</creatorcontrib><collection>Wiley-Blackwell Open Access Collection</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><jtitle>Mathematical methods in the applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kirsch, A.</au><au>Schweizer, B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Periodic waveguides revisited: Radiation conditions, limiting absorption principles, and the space of bounded solutions</atitle><jtitle>Mathematical methods in the applied sciences</jtitle><date>2025-01-30</date><risdate>2025</risdate><volume>48</volume><issue>2</issue><spage>2267</spage><epage>2293</epage><pages>2267-2293</pages><issn>0170-4214</issn><eissn>1099-1476</eissn><abstract>We study the Helmholtz equation with periodic coefficients in a closed waveguide. A functional analytic approach is used to formulate and solve the radiation problem in a self‐contained exposition. In this context, we simplify the non‐degeneracy assumption on the frequency. Limiting absorption principles (LAPs) are studied, and the radiation condition corresponding to the chosen LAP is derived; we include an example to show different LAPs lead, in general, to different solutions of the radiation problem. Finally, we characterize the set of all bounded solutions to the homogeneous problem.</abstract><cop>Freiburg</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/mma.10435</doi><tpages>27</tpages><orcidid>https://orcid.org/0000-0003-3578-7504</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0170-4214
ispartof Mathematical methods in the applied sciences, 2025-01, Vol.48 (2), p.2267-2293
issn 0170-4214
1099-1476
language eng
recordid cdi_proquest_journals_3144970559
source Wiley Online Library
subjects Absorption
Constraining
Helmholtz equation
Helmholtz equations
limiting absorption principle
radiation condition
waveguide
Waveguides
title Periodic waveguides revisited: Radiation conditions, limiting absorption principles, and the space of bounded solutions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T16%3A24%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Periodic%20waveguides%20revisited:%20Radiation%20conditions,%20limiting%20absorption%20principles,%20and%20the%20space%20of%20bounded%20solutions&rft.jtitle=Mathematical%20methods%20in%20the%20applied%20sciences&rft.au=Kirsch,%20A.&rft.date=2025-01-30&rft.volume=48&rft.issue=2&rft.spage=2267&rft.epage=2293&rft.pages=2267-2293&rft.issn=0170-4214&rft.eissn=1099-1476&rft_id=info:doi/10.1002/mma.10435&rft_dat=%3Cproquest_cross%3E3144970559%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3144970559&rft_id=info:pmid/&rfr_iscdi=true