Grinding of CF‐Reinforced Thermoplastic and Thermoset Composites: Is There Contamination in the Process?

The growing demand for carbon fiber‐reinforced thermoplastic and thermoset (CFRT) composites, mainly in the aerospace, automotive, and energy industries, is due to obtaining lighter components. However, the amount of waste generated during the CFRT production process and at the end of its useful lif...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Macromolecular symposia. 2024-12, Vol.413 (6), p.n/a
Hauptverfasser: Montagna, Larissa Stieven, dos Santos, Maikon Stefano, da Silva, Thais Ferreira, Montanheiro, Thaís Larissa do Amaral, Marini, Juliano, Rezende, Mirabel Cerqueira, Passador, Fabio Roberto
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 6
container_start_page
container_title Macromolecular symposia.
container_volume 413
creator Montagna, Larissa Stieven
dos Santos, Maikon Stefano
da Silva, Thais Ferreira
Montanheiro, Thaís Larissa do Amaral
Marini, Juliano
Rezende, Mirabel Cerqueira
Passador, Fabio Roberto
description The growing demand for carbon fiber‐reinforced thermoplastic and thermoset (CFRT) composites, mainly in the aerospace, automotive, and energy industries, is due to obtaining lighter components. However, the amount of waste generated during the CFRT production process and at the end of its useful life has been increasing sharply, urgently requiring viable solutions that create less environmental impact in its final disposal. The mechanical recycling process has been presented as an economically and environmentally viable alternative to minimize the environmental impacts generated by the accumulation of this waste in the environment. Therefore, in this study, possible contaminations arising from the grinding process of waste composites reinforced with carbon fiber (CF) based on thermoplastics, polyamide 6 (CF/PA6), low melting poly (aryl ether ketone) (CF/PAEK), poly (phenylene sulfide) (CF/PPS), and fast‐curing epoxy thermoset, are investigated. The composites are ground in a knife mill, resulting in materials measuring (2.6 ± 1) mm. Through differential scanning calorimetry (DSC) analysis, it is observed that the thermal profile of the ground composites is not changed; only the CF/PA6 composite shows an increase of 10% in the value of the degree of crystallinity. X‐ray diffraction (XRD) and scanning electron microscopy (SEM) equipped with an energy‐dispersive X‐ray spectrometer show no metallic contamination from the grinding process. Only low levels of aluminum contamination are observed (below 2.7 wt%), attributed to the comminution step of the waste using an angle grinder adapted to cutting discs with abrasive aluminum oxide grains before the grounding process in the knife mill.
doi_str_mv 10.1002/masy.202400095
format Article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_3144918460</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3144918460</sourcerecordid><originalsourceid>FETCH-LOGICAL-p785-e3c8a9770987b29fdfd4965331d74746dfd66f46a14c1eba2595303e724b65af3</originalsourceid><addsrcrecordid>eNo9kM1OwzAQhC0EEqVw5WyJc4r_YsdcUBXRUqkIBL1wstzEoa4aO9ipUG48As_Ik5BS6Gl3Zj_tSAPAJUYjjBC5rnXsRgQRhhCS6REY4JTghEqEjvsdEZJgytEpOItxvUOkwAOwngbrSuveoK9gPvn-_Ho21lU-FKaEi5UJtW82Ora2gNr9O9G0MPd146NtTbyBs_h7ML3pWl1bp1vrHbQOtisDn4IvTIy35-Ck0ptoLv7mECwmd4v8Ppk_Tmf5eJ40IksTQ4tMSyGQzMSSyKqsSiZ5SikuBROM95rzinGNWYHNUpNUphRRIwhb8lRXdAiu9m-b4N-3JrZq7bfB9YmKYsYkzhhHPSX31IfdmE41wdY6dAojtetS7bpUhy7Vw_jl9aDoD3ZYa90</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3144918460</pqid></control><display><type>article</type><title>Grinding of CF‐Reinforced Thermoplastic and Thermoset Composites: Is There Contamination in the Process?</title><source>Wiley Online Library - AutoHoldings Journals</source><creator>Montagna, Larissa Stieven ; dos Santos, Maikon Stefano ; da Silva, Thais Ferreira ; Montanheiro, Thaís Larissa do Amaral ; Marini, Juliano ; Rezende, Mirabel Cerqueira ; Passador, Fabio Roberto</creator><creatorcontrib>Montagna, Larissa Stieven ; dos Santos, Maikon Stefano ; da Silva, Thais Ferreira ; Montanheiro, Thaís Larissa do Amaral ; Marini, Juliano ; Rezende, Mirabel Cerqueira ; Passador, Fabio Roberto</creatorcontrib><description>The growing demand for carbon fiber‐reinforced thermoplastic and thermoset (CFRT) composites, mainly in the aerospace, automotive, and energy industries, is due to obtaining lighter components. However, the amount of waste generated during the CFRT production process and at the end of its useful life has been increasing sharply, urgently requiring viable solutions that create less environmental impact in its final disposal. The mechanical recycling process has been presented as an economically and environmentally viable alternative to minimize the environmental impacts generated by the accumulation of this waste in the environment. Therefore, in this study, possible contaminations arising from the grinding process of waste composites reinforced with carbon fiber (CF) based on thermoplastics, polyamide 6 (CF/PA6), low melting poly (aryl ether ketone) (CF/PAEK), poly (phenylene sulfide) (CF/PPS), and fast‐curing epoxy thermoset, are investigated. The composites are ground in a knife mill, resulting in materials measuring (2.6 ± 1) mm. Through differential scanning calorimetry (DSC) analysis, it is observed that the thermal profile of the ground composites is not changed; only the CF/PA6 composite shows an increase of 10% in the value of the degree of crystallinity. X‐ray diffraction (XRD) and scanning electron microscopy (SEM) equipped with an energy‐dispersive X‐ray spectrometer show no metallic contamination from the grinding process. Only low levels of aluminum contamination are observed (below 2.7 wt%), attributed to the comminution step of the waste using an angle grinder adapted to cutting discs with abrasive aluminum oxide grains before the grounding process in the knife mill.</description><identifier>ISSN: 1022-1360</identifier><identifier>EISSN: 1521-3900</identifier><identifier>DOI: 10.1002/masy.202400095</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Abrasive cutting ; Aluminum ; Aluminum oxide ; Carbon ; carbon fiber ; Carbon fiber reinforced plastics ; Carbon fibers ; Comminution ; Composite materials ; Contamination ; Degree of crystallinity ; Differential scanning calorimetry ; Environmental impact ; grinding process ; Ketones ; Polyamide resins ; Polyphenylene sulfides ; process contamination ; Scanning electron microscopy ; thermoplastic and thermoset composites ; Thermoplastic resins ; X-ray diffraction</subject><ispartof>Macromolecular symposia., 2024-12, Vol.413 (6), p.n/a</ispartof><rights>2024 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-2022-5050 ; 0000-0002-7947-3112 ; 0000-0003-4230-8161 ; 0000-0001-5239-5962</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmasy.202400095$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmasy.202400095$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Montagna, Larissa Stieven</creatorcontrib><creatorcontrib>dos Santos, Maikon Stefano</creatorcontrib><creatorcontrib>da Silva, Thais Ferreira</creatorcontrib><creatorcontrib>Montanheiro, Thaís Larissa do Amaral</creatorcontrib><creatorcontrib>Marini, Juliano</creatorcontrib><creatorcontrib>Rezende, Mirabel Cerqueira</creatorcontrib><creatorcontrib>Passador, Fabio Roberto</creatorcontrib><title>Grinding of CF‐Reinforced Thermoplastic and Thermoset Composites: Is There Contamination in the Process?</title><title>Macromolecular symposia.</title><description>The growing demand for carbon fiber‐reinforced thermoplastic and thermoset (CFRT) composites, mainly in the aerospace, automotive, and energy industries, is due to obtaining lighter components. However, the amount of waste generated during the CFRT production process and at the end of its useful life has been increasing sharply, urgently requiring viable solutions that create less environmental impact in its final disposal. The mechanical recycling process has been presented as an economically and environmentally viable alternative to minimize the environmental impacts generated by the accumulation of this waste in the environment. Therefore, in this study, possible contaminations arising from the grinding process of waste composites reinforced with carbon fiber (CF) based on thermoplastics, polyamide 6 (CF/PA6), low melting poly (aryl ether ketone) (CF/PAEK), poly (phenylene sulfide) (CF/PPS), and fast‐curing epoxy thermoset, are investigated. The composites are ground in a knife mill, resulting in materials measuring (2.6 ± 1) mm. Through differential scanning calorimetry (DSC) analysis, it is observed that the thermal profile of the ground composites is not changed; only the CF/PA6 composite shows an increase of 10% in the value of the degree of crystallinity. X‐ray diffraction (XRD) and scanning electron microscopy (SEM) equipped with an energy‐dispersive X‐ray spectrometer show no metallic contamination from the grinding process. Only low levels of aluminum contamination are observed (below 2.7 wt%), attributed to the comminution step of the waste using an angle grinder adapted to cutting discs with abrasive aluminum oxide grains before the grounding process in the knife mill.</description><subject>Abrasive cutting</subject><subject>Aluminum</subject><subject>Aluminum oxide</subject><subject>Carbon</subject><subject>carbon fiber</subject><subject>Carbon fiber reinforced plastics</subject><subject>Carbon fibers</subject><subject>Comminution</subject><subject>Composite materials</subject><subject>Contamination</subject><subject>Degree of crystallinity</subject><subject>Differential scanning calorimetry</subject><subject>Environmental impact</subject><subject>grinding process</subject><subject>Ketones</subject><subject>Polyamide resins</subject><subject>Polyphenylene sulfides</subject><subject>process contamination</subject><subject>Scanning electron microscopy</subject><subject>thermoplastic and thermoset composites</subject><subject>Thermoplastic resins</subject><subject>X-ray diffraction</subject><issn>1022-1360</issn><issn>1521-3900</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo9kM1OwzAQhC0EEqVw5WyJc4r_YsdcUBXRUqkIBL1wstzEoa4aO9ipUG48As_Ik5BS6Gl3Zj_tSAPAJUYjjBC5rnXsRgQRhhCS6REY4JTghEqEjvsdEZJgytEpOItxvUOkwAOwngbrSuveoK9gPvn-_Ho21lU-FKaEi5UJtW82Ora2gNr9O9G0MPd146NtTbyBs_h7ML3pWl1bp1vrHbQOtisDn4IvTIy35-Ck0ptoLv7mECwmd4v8Ppk_Tmf5eJ40IksTQ4tMSyGQzMSSyKqsSiZ5SikuBROM95rzinGNWYHNUpNUphRRIwhb8lRXdAiu9m-b4N-3JrZq7bfB9YmKYsYkzhhHPSX31IfdmE41wdY6dAojtetS7bpUhy7Vw_jl9aDoD3ZYa90</recordid><startdate>202412</startdate><enddate>202412</enddate><creator>Montagna, Larissa Stieven</creator><creator>dos Santos, Maikon Stefano</creator><creator>da Silva, Thais Ferreira</creator><creator>Montanheiro, Thaís Larissa do Amaral</creator><creator>Marini, Juliano</creator><creator>Rezende, Mirabel Cerqueira</creator><creator>Passador, Fabio Roberto</creator><general>Wiley Subscription Services, Inc</general><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0002-2022-5050</orcidid><orcidid>https://orcid.org/0000-0002-7947-3112</orcidid><orcidid>https://orcid.org/0000-0003-4230-8161</orcidid><orcidid>https://orcid.org/0000-0001-5239-5962</orcidid></search><sort><creationdate>202412</creationdate><title>Grinding of CF‐Reinforced Thermoplastic and Thermoset Composites: Is There Contamination in the Process?</title><author>Montagna, Larissa Stieven ; dos Santos, Maikon Stefano ; da Silva, Thais Ferreira ; Montanheiro, Thaís Larissa do Amaral ; Marini, Juliano ; Rezende, Mirabel Cerqueira ; Passador, Fabio Roberto</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p785-e3c8a9770987b29fdfd4965331d74746dfd66f46a14c1eba2595303e724b65af3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Abrasive cutting</topic><topic>Aluminum</topic><topic>Aluminum oxide</topic><topic>Carbon</topic><topic>carbon fiber</topic><topic>Carbon fiber reinforced plastics</topic><topic>Carbon fibers</topic><topic>Comminution</topic><topic>Composite materials</topic><topic>Contamination</topic><topic>Degree of crystallinity</topic><topic>Differential scanning calorimetry</topic><topic>Environmental impact</topic><topic>grinding process</topic><topic>Ketones</topic><topic>Polyamide resins</topic><topic>Polyphenylene sulfides</topic><topic>process contamination</topic><topic>Scanning electron microscopy</topic><topic>thermoplastic and thermoset composites</topic><topic>Thermoplastic resins</topic><topic>X-ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Montagna, Larissa Stieven</creatorcontrib><creatorcontrib>dos Santos, Maikon Stefano</creatorcontrib><creatorcontrib>da Silva, Thais Ferreira</creatorcontrib><creatorcontrib>Montanheiro, Thaís Larissa do Amaral</creatorcontrib><creatorcontrib>Marini, Juliano</creatorcontrib><creatorcontrib>Rezende, Mirabel Cerqueira</creatorcontrib><creatorcontrib>Passador, Fabio Roberto</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Macromolecular symposia.</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Montagna, Larissa Stieven</au><au>dos Santos, Maikon Stefano</au><au>da Silva, Thais Ferreira</au><au>Montanheiro, Thaís Larissa do Amaral</au><au>Marini, Juliano</au><au>Rezende, Mirabel Cerqueira</au><au>Passador, Fabio Roberto</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Grinding of CF‐Reinforced Thermoplastic and Thermoset Composites: Is There Contamination in the Process?</atitle><jtitle>Macromolecular symposia.</jtitle><date>2024-12</date><risdate>2024</risdate><volume>413</volume><issue>6</issue><epage>n/a</epage><issn>1022-1360</issn><eissn>1521-3900</eissn><abstract>The growing demand for carbon fiber‐reinforced thermoplastic and thermoset (CFRT) composites, mainly in the aerospace, automotive, and energy industries, is due to obtaining lighter components. However, the amount of waste generated during the CFRT production process and at the end of its useful life has been increasing sharply, urgently requiring viable solutions that create less environmental impact in its final disposal. The mechanical recycling process has been presented as an economically and environmentally viable alternative to minimize the environmental impacts generated by the accumulation of this waste in the environment. Therefore, in this study, possible contaminations arising from the grinding process of waste composites reinforced with carbon fiber (CF) based on thermoplastics, polyamide 6 (CF/PA6), low melting poly (aryl ether ketone) (CF/PAEK), poly (phenylene sulfide) (CF/PPS), and fast‐curing epoxy thermoset, are investigated. The composites are ground in a knife mill, resulting in materials measuring (2.6 ± 1) mm. Through differential scanning calorimetry (DSC) analysis, it is observed that the thermal profile of the ground composites is not changed; only the CF/PA6 composite shows an increase of 10% in the value of the degree of crystallinity. X‐ray diffraction (XRD) and scanning electron microscopy (SEM) equipped with an energy‐dispersive X‐ray spectrometer show no metallic contamination from the grinding process. Only low levels of aluminum contamination are observed (below 2.7 wt%), attributed to the comminution step of the waste using an angle grinder adapted to cutting discs with abrasive aluminum oxide grains before the grounding process in the knife mill.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/masy.202400095</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-2022-5050</orcidid><orcidid>https://orcid.org/0000-0002-7947-3112</orcidid><orcidid>https://orcid.org/0000-0003-4230-8161</orcidid><orcidid>https://orcid.org/0000-0001-5239-5962</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1022-1360
ispartof Macromolecular symposia., 2024-12, Vol.413 (6), p.n/a
issn 1022-1360
1521-3900
language eng
recordid cdi_proquest_journals_3144918460
source Wiley Online Library - AutoHoldings Journals
subjects Abrasive cutting
Aluminum
Aluminum oxide
Carbon
carbon fiber
Carbon fiber reinforced plastics
Carbon fibers
Comminution
Composite materials
Contamination
Degree of crystallinity
Differential scanning calorimetry
Environmental impact
grinding process
Ketones
Polyamide resins
Polyphenylene sulfides
process contamination
Scanning electron microscopy
thermoplastic and thermoset composites
Thermoplastic resins
X-ray diffraction
title Grinding of CF‐Reinforced Thermoplastic and Thermoset Composites: Is There Contamination in the Process?
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T14%3A13%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Grinding%20of%20CF%E2%80%90Reinforced%20Thermoplastic%20and%20Thermoset%20Composites:%20Is%20There%20Contamination%20in%20the%20Process?&rft.jtitle=Macromolecular%20symposia.&rft.au=Montagna,%20Larissa%20Stieven&rft.date=2024-12&rft.volume=413&rft.issue=6&rft.epage=n/a&rft.issn=1022-1360&rft.eissn=1521-3900&rft_id=info:doi/10.1002/masy.202400095&rft_dat=%3Cproquest_wiley%3E3144918460%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3144918460&rft_id=info:pmid/&rfr_iscdi=true