Energetic analysis of spreading of impacting drops on cold surfaces
The mechanism restricting an advancing contact line remains debated for drop impacts on cold solid substrates while a lamella is spreading and solidifying simultaneously. We conducted experiments involving hexadecane drops impacts on cold solid substrates at different temperatures below liquid freez...
Gespeichert in:
Veröffentlicht in: | Journal of engineering mathematics 2025-02, Vol.150 (1), Article 5 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | Journal of engineering mathematics |
container_volume | 150 |
creator | Yan, Peiwen McCormack, Conan Davis, Stephen H. Pirouz Kavehpour, H. |
description | The mechanism restricting an advancing contact line remains debated for drop impacts on cold solid substrates while a lamella is spreading and solidifying simultaneously. We conducted experiments involving hexadecane drops impacts on cold solid substrates at different temperatures below liquid freezing temperature with various impact velocities to observe spreading and contact line dynamics. Due to the similarity in temporal growth of viscous and freezing boundary layers, an effective boundary layer thickness is introduced to estimate dissipation in the shear layer. As the contact line is caught up by freezing front, driven by non-equilibrium kinetic solidification, lamella spreads over solidified volume at contact line region. An additional dissipative friction at proximity to contact line is therefore proposed, which can be incorporated to account freezing-induced dissipative mechanisms at contact line in any prognostic model for maximum solidification-limited spreading ratio. In an energetic argument, we assess relative dissipation of energy in the parameter space of Weber and Stefan numbers and propose a nondimensional number
Di
to characterize whether solidification-induced energy dissipation basally in the shear layer or laterally at the contact line dominates to limit droplet spreading. |
doi_str_mv | 10.1007/s10665-024-10412-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3144655657</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3144655657</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-8121932ec27d86b5271a9e0eaaa385601cd3ebc3160a433fae968187a00222853</originalsourceid><addsrcrecordid>eNp9kDFPwzAQhS0EEqXwB5giMRvu7NhxRlQVilSJBWbr6jhVqjYJdjL03-MQJDam09Pde7r3MXaP8IgAxVNE0FpxEDlHyFHw8oItUBWSiwLkJVsACMHBSHnNbmI8AEBpcrFgq3Xrw94PjcuopeM5NjHr6iz2wVPVtPtJNKee3DCJKnR92reZ645VFsdQk_Pxll3VdIz-7ncu2efL-mO14dv317fV85Y7ATBwgwJLKbwTRWX0TokCqfTgiUgapQFdJf3OSdRAuZQ1-VIbNAVNvwuj5JI9zLl96L5GHwd76MaQvo5WYp5rpXRqvGRivnKhizH42vahOVE4WwQ7wbIzLJtg2R9YtkwmOZtS8VTUh7_of1zfsoRrKQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3144655657</pqid></control><display><type>article</type><title>Energetic analysis of spreading of impacting drops on cold surfaces</title><source>Springer Nature - Complete Springer Journals</source><creator>Yan, Peiwen ; McCormack, Conan ; Davis, Stephen H. ; Pirouz Kavehpour, H.</creator><creatorcontrib>Yan, Peiwen ; McCormack, Conan ; Davis, Stephen H. ; Pirouz Kavehpour, H.</creatorcontrib><description>The mechanism restricting an advancing contact line remains debated for drop impacts on cold solid substrates while a lamella is spreading and solidifying simultaneously. We conducted experiments involving hexadecane drops impacts on cold solid substrates at different temperatures below liquid freezing temperature with various impact velocities to observe spreading and contact line dynamics. Due to the similarity in temporal growth of viscous and freezing boundary layers, an effective boundary layer thickness is introduced to estimate dissipation in the shear layer. As the contact line is caught up by freezing front, driven by non-equilibrium kinetic solidification, lamella spreads over solidified volume at contact line region. An additional dissipative friction at proximity to contact line is therefore proposed, which can be incorporated to account freezing-induced dissipative mechanisms at contact line in any prognostic model for maximum solidification-limited spreading ratio. In an energetic argument, we assess relative dissipation of energy in the parameter space of Weber and Stefan numbers and propose a nondimensional number
Di
to characterize whether solidification-induced energy dissipation basally in the shear layer or laterally at the contact line dominates to limit droplet spreading.</description><identifier>ISSN: 0022-0833</identifier><identifier>EISSN: 1573-2703</identifier><identifier>DOI: 10.1007/s10665-024-10412-9</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Applications of Mathematics ; Boundary layer thickness ; Cold surfaces ; Computational Mathematics and Numerical Analysis ; Dimensionless numbers ; Energy dissipation ; Freezing ; Hexadecane ; Impact analysis ; Impact velocity ; Mathematical and Computational Engineering ; Mathematical Modeling and Industrial Mathematics ; Mathematics ; Mathematics and Statistics ; Shear layers ; Solidification ; Substrates ; Theoretical and Applied Mechanics</subject><ispartof>Journal of engineering mathematics, 2025-02, Vol.150 (1), Article 5</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>Copyright Springer Nature B.V. 2025</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c200t-8121932ec27d86b5271a9e0eaaa385601cd3ebc3160a433fae968187a00222853</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10665-024-10412-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10665-024-10412-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Yan, Peiwen</creatorcontrib><creatorcontrib>McCormack, Conan</creatorcontrib><creatorcontrib>Davis, Stephen H.</creatorcontrib><creatorcontrib>Pirouz Kavehpour, H.</creatorcontrib><title>Energetic analysis of spreading of impacting drops on cold surfaces</title><title>Journal of engineering mathematics</title><addtitle>J Eng Math</addtitle><description>The mechanism restricting an advancing contact line remains debated for drop impacts on cold solid substrates while a lamella is spreading and solidifying simultaneously. We conducted experiments involving hexadecane drops impacts on cold solid substrates at different temperatures below liquid freezing temperature with various impact velocities to observe spreading and contact line dynamics. Due to the similarity in temporal growth of viscous and freezing boundary layers, an effective boundary layer thickness is introduced to estimate dissipation in the shear layer. As the contact line is caught up by freezing front, driven by non-equilibrium kinetic solidification, lamella spreads over solidified volume at contact line region. An additional dissipative friction at proximity to contact line is therefore proposed, which can be incorporated to account freezing-induced dissipative mechanisms at contact line in any prognostic model for maximum solidification-limited spreading ratio. In an energetic argument, we assess relative dissipation of energy in the parameter space of Weber and Stefan numbers and propose a nondimensional number
Di
to characterize whether solidification-induced energy dissipation basally in the shear layer or laterally at the contact line dominates to limit droplet spreading.</description><subject>Applications of Mathematics</subject><subject>Boundary layer thickness</subject><subject>Cold surfaces</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Dimensionless numbers</subject><subject>Energy dissipation</subject><subject>Freezing</subject><subject>Hexadecane</subject><subject>Impact analysis</subject><subject>Impact velocity</subject><subject>Mathematical and Computational Engineering</subject><subject>Mathematical Modeling and Industrial Mathematics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Shear layers</subject><subject>Solidification</subject><subject>Substrates</subject><subject>Theoretical and Applied Mechanics</subject><issn>0022-0833</issn><issn>1573-2703</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><recordid>eNp9kDFPwzAQhS0EEqXwB5giMRvu7NhxRlQVilSJBWbr6jhVqjYJdjL03-MQJDam09Pde7r3MXaP8IgAxVNE0FpxEDlHyFHw8oItUBWSiwLkJVsACMHBSHnNbmI8AEBpcrFgq3Xrw94PjcuopeM5NjHr6iz2wVPVtPtJNKee3DCJKnR92reZ645VFsdQk_Pxll3VdIz-7ncu2efL-mO14dv317fV85Y7ATBwgwJLKbwTRWX0TokCqfTgiUgapQFdJf3OSdRAuZQ1-VIbNAVNvwuj5JI9zLl96L5GHwd76MaQvo5WYp5rpXRqvGRivnKhizH42vahOVE4WwQ7wbIzLJtg2R9YtkwmOZtS8VTUh7_of1zfsoRrKQ</recordid><startdate>20250201</startdate><enddate>20250201</enddate><creator>Yan, Peiwen</creator><creator>McCormack, Conan</creator><creator>Davis, Stephen H.</creator><creator>Pirouz Kavehpour, H.</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20250201</creationdate><title>Energetic analysis of spreading of impacting drops on cold surfaces</title><author>Yan, Peiwen ; McCormack, Conan ; Davis, Stephen H. ; Pirouz Kavehpour, H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-8121932ec27d86b5271a9e0eaaa385601cd3ebc3160a433fae968187a00222853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Applications of Mathematics</topic><topic>Boundary layer thickness</topic><topic>Cold surfaces</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Dimensionless numbers</topic><topic>Energy dissipation</topic><topic>Freezing</topic><topic>Hexadecane</topic><topic>Impact analysis</topic><topic>Impact velocity</topic><topic>Mathematical and Computational Engineering</topic><topic>Mathematical Modeling and Industrial Mathematics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Shear layers</topic><topic>Solidification</topic><topic>Substrates</topic><topic>Theoretical and Applied Mechanics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yan, Peiwen</creatorcontrib><creatorcontrib>McCormack, Conan</creatorcontrib><creatorcontrib>Davis, Stephen H.</creatorcontrib><creatorcontrib>Pirouz Kavehpour, H.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of engineering mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yan, Peiwen</au><au>McCormack, Conan</au><au>Davis, Stephen H.</au><au>Pirouz Kavehpour, H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Energetic analysis of spreading of impacting drops on cold surfaces</atitle><jtitle>Journal of engineering mathematics</jtitle><stitle>J Eng Math</stitle><date>2025-02-01</date><risdate>2025</risdate><volume>150</volume><issue>1</issue><artnum>5</artnum><issn>0022-0833</issn><eissn>1573-2703</eissn><abstract>The mechanism restricting an advancing contact line remains debated for drop impacts on cold solid substrates while a lamella is spreading and solidifying simultaneously. We conducted experiments involving hexadecane drops impacts on cold solid substrates at different temperatures below liquid freezing temperature with various impact velocities to observe spreading and contact line dynamics. Due to the similarity in temporal growth of viscous and freezing boundary layers, an effective boundary layer thickness is introduced to estimate dissipation in the shear layer. As the contact line is caught up by freezing front, driven by non-equilibrium kinetic solidification, lamella spreads over solidified volume at contact line region. An additional dissipative friction at proximity to contact line is therefore proposed, which can be incorporated to account freezing-induced dissipative mechanisms at contact line in any prognostic model for maximum solidification-limited spreading ratio. In an energetic argument, we assess relative dissipation of energy in the parameter space of Weber and Stefan numbers and propose a nondimensional number
Di
to characterize whether solidification-induced energy dissipation basally in the shear layer or laterally at the contact line dominates to limit droplet spreading.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10665-024-10412-9</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-0833 |
ispartof | Journal of engineering mathematics, 2025-02, Vol.150 (1), Article 5 |
issn | 0022-0833 1573-2703 |
language | eng |
recordid | cdi_proquest_journals_3144655657 |
source | Springer Nature - Complete Springer Journals |
subjects | Applications of Mathematics Boundary layer thickness Cold surfaces Computational Mathematics and Numerical Analysis Dimensionless numbers Energy dissipation Freezing Hexadecane Impact analysis Impact velocity Mathematical and Computational Engineering Mathematical Modeling and Industrial Mathematics Mathematics Mathematics and Statistics Shear layers Solidification Substrates Theoretical and Applied Mechanics |
title | Energetic analysis of spreading of impacting drops on cold surfaces |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T17%3A54%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Energetic%20analysis%20of%20spreading%20of%20impacting%20drops%20on%20cold%20surfaces&rft.jtitle=Journal%20of%20engineering%20mathematics&rft.au=Yan,%20Peiwen&rft.date=2025-02-01&rft.volume=150&rft.issue=1&rft.artnum=5&rft.issn=0022-0833&rft.eissn=1573-2703&rft_id=info:doi/10.1007/s10665-024-10412-9&rft_dat=%3Cproquest_cross%3E3144655657%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3144655657&rft_id=info:pmid/&rfr_iscdi=true |