Inductance Modelling of Planar Meander Structure Using RBM and kNN

Meander Line is a type of inductor that consists of a compact structure while maintaining a certain length of the conducting lines in the combination of vertical and horizontal lines because of this nature it reduces the size of the device. In this paper, the prediction of the meander structured lin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SN computer science 2024-12, Vol.5 (8), p.1169
Hauptverfasser: Ansari, Mohammad Ahmad, Agarwal, Poonam
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 8
container_start_page 1169
container_title SN computer science
container_volume 5
creator Ansari, Mohammad Ahmad
Agarwal, Poonam
description Meander Line is a type of inductor that consists of a compact structure while maintaining a certain length of the conducting lines in the combination of vertical and horizontal lines because of this nature it reduces the size of the device. In this paper, the prediction of the meander structured line inductance using the Restricted Boltzmann Machine (RBM) and k-Nearest Neighbor (kNN) has been demonstrated. The modelling for inductance has been done with physical parameters of the meander structure as input parameters with 10, 000 and 1, 20, 120 data points created using analytical formulation and simulation. Analytical data is created using the analytical formula available for the meander structure. The simulation data is created by performing the simulations in the 3D software Computer Simulation Tool (CST) Microwave Studio. The Mean Squared Error (MSE) in the RBM and kNN model is 0.869, 4.34, respectively on analytical data and 8.869 and 1.129, respectively on simulation data. Further, the desired generalizability of the developed model has been validated by creating the new dataset in-between the range selected and also out of the range selected apart from the train-test and the performance of the model showing good agreement.
doi_str_mv 10.1007/s42979-024-03516-7
format Article
fullrecord <record><control><sourceid>proquest_sprin</sourceid><recordid>TN_cdi_proquest_journals_3144437268</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3144437268</sourcerecordid><originalsourceid>FETCH-LOGICAL-p727-5adf6638ee1a9e37656a69d70d86076c260db94b8af59d4b35155b67b14c35633</originalsourceid><addsrcrecordid>eNpFkE1LAzEQhoMoWGr_gKeA5-jka7I52uJHoa2iFbyF7CYr1mW3Zrv_v2kreJqBeZiZ9yHkmsMtBzB3vRLWWAZCMZCaIzNnZCQQOSssmPNjL5i1-vOSTPp-AwBCg1KoR2Q6b8NQ7XxbRbrsQmya7_aLdjV9bXzrE11G34aY6PsuZWxIkX70B-JtuqR5Qn9WqytyUfumj5O_Oibrx4f17JktXp7ms_sF2xphmPahRpRFjNzbKA1q9GiDgVAgGKwEQiitKgtfaxtUmYNoXaIpuaqkRinH5Oa0dpu63yH2O7fphtTmi05ypZQ0AotMyRPVb1P-M6Z_ioM76HInXS7rckddzsg9fipbFA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3144437268</pqid></control><display><type>article</type><title>Inductance Modelling of Planar Meander Structure Using RBM and kNN</title><source>SpringerNature Journals</source><creator>Ansari, Mohammad Ahmad ; Agarwal, Poonam</creator><creatorcontrib>Ansari, Mohammad Ahmad ; Agarwal, Poonam</creatorcontrib><description>Meander Line is a type of inductor that consists of a compact structure while maintaining a certain length of the conducting lines in the combination of vertical and horizontal lines because of this nature it reduces the size of the device. In this paper, the prediction of the meander structured line inductance using the Restricted Boltzmann Machine (RBM) and k-Nearest Neighbor (kNN) has been demonstrated. The modelling for inductance has been done with physical parameters of the meander structure as input parameters with 10, 000 and 1, 20, 120 data points created using analytical formulation and simulation. Analytical data is created using the analytical formula available for the meander structure. The simulation data is created by performing the simulations in the 3D software Computer Simulation Tool (CST) Microwave Studio. The Mean Squared Error (MSE) in the RBM and kNN model is 0.869, 4.34, respectively on analytical data and 8.869 and 1.129, respectively on simulation data. Further, the desired generalizability of the developed model has been validated by creating the new dataset in-between the range selected and also out of the range selected apart from the train-test and the performance of the model showing good agreement.</description><identifier>ISSN: 2662-995X</identifier><identifier>EISSN: 2661-8907</identifier><identifier>DOI: 10.1007/s42979-024-03516-7</identifier><language>eng</language><publisher>Singapore: Springer Nature Singapore</publisher><subject>Computer Imaging ; Computer Science ; Computer Systems Organization and Communication Networks ; Data analysis ; Data points ; Data Structures and Information Theory ; Datasets ; Error analysis ; Inductance ; Inductors ; Information Systems and Communication Service ; Knowledge ; Machine learning ; Mathematical analysis ; Modelling ; Neural networks ; Optimization ; Original Research ; Parameters ; Pattern Recognition and Graphics ; Physical properties ; Probability distribution ; Simulation ; Software ; Software Engineering/Programming and Operating Systems ; Unleashing the Advances in ICT for Digital Transformation through Data Engineering and Data Analytics ; Variables ; Vision</subject><ispartof>SN computer science, 2024-12, Vol.5 (8), p.1169</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd. 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>Copyright Springer Nature B.V. Dec 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-7826-161X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s42979-024-03516-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s42979-024-03516-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Ansari, Mohammad Ahmad</creatorcontrib><creatorcontrib>Agarwal, Poonam</creatorcontrib><title>Inductance Modelling of Planar Meander Structure Using RBM and kNN</title><title>SN computer science</title><addtitle>SN COMPUT. SCI</addtitle><description>Meander Line is a type of inductor that consists of a compact structure while maintaining a certain length of the conducting lines in the combination of vertical and horizontal lines because of this nature it reduces the size of the device. In this paper, the prediction of the meander structured line inductance using the Restricted Boltzmann Machine (RBM) and k-Nearest Neighbor (kNN) has been demonstrated. The modelling for inductance has been done with physical parameters of the meander structure as input parameters with 10, 000 and 1, 20, 120 data points created using analytical formulation and simulation. Analytical data is created using the analytical formula available for the meander structure. The simulation data is created by performing the simulations in the 3D software Computer Simulation Tool (CST) Microwave Studio. The Mean Squared Error (MSE) in the RBM and kNN model is 0.869, 4.34, respectively on analytical data and 8.869 and 1.129, respectively on simulation data. Further, the desired generalizability of the developed model has been validated by creating the new dataset in-between the range selected and also out of the range selected apart from the train-test and the performance of the model showing good agreement.</description><subject>Computer Imaging</subject><subject>Computer Science</subject><subject>Computer Systems Organization and Communication Networks</subject><subject>Data analysis</subject><subject>Data points</subject><subject>Data Structures and Information Theory</subject><subject>Datasets</subject><subject>Error analysis</subject><subject>Inductance</subject><subject>Inductors</subject><subject>Information Systems and Communication Service</subject><subject>Knowledge</subject><subject>Machine learning</subject><subject>Mathematical analysis</subject><subject>Modelling</subject><subject>Neural networks</subject><subject>Optimization</subject><subject>Original Research</subject><subject>Parameters</subject><subject>Pattern Recognition and Graphics</subject><subject>Physical properties</subject><subject>Probability distribution</subject><subject>Simulation</subject><subject>Software</subject><subject>Software Engineering/Programming and Operating Systems</subject><subject>Unleashing the Advances in ICT for Digital Transformation through Data Engineering and Data Analytics</subject><subject>Variables</subject><subject>Vision</subject><issn>2662-995X</issn><issn>2661-8907</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpFkE1LAzEQhoMoWGr_gKeA5-jka7I52uJHoa2iFbyF7CYr1mW3Zrv_v2kreJqBeZiZ9yHkmsMtBzB3vRLWWAZCMZCaIzNnZCQQOSssmPNjL5i1-vOSTPp-AwBCg1KoR2Q6b8NQ7XxbRbrsQmya7_aLdjV9bXzrE11G34aY6PsuZWxIkX70B-JtuqR5Qn9WqytyUfumj5O_Oibrx4f17JktXp7ms_sF2xphmPahRpRFjNzbKA1q9GiDgVAgGKwEQiitKgtfaxtUmYNoXaIpuaqkRinH5Oa0dpu63yH2O7fphtTmi05ypZQ0AotMyRPVb1P-M6Z_ioM76HInXS7rckddzsg9fipbFA</recordid><startdate>20241214</startdate><enddate>20241214</enddate><creator>Ansari, Mohammad Ahmad</creator><creator>Agarwal, Poonam</creator><general>Springer Nature Singapore</general><general>Springer Nature B.V</general><scope>JQ2</scope><orcidid>https://orcid.org/0000-0002-7826-161X</orcidid></search><sort><creationdate>20241214</creationdate><title>Inductance Modelling of Planar Meander Structure Using RBM and kNN</title><author>Ansari, Mohammad Ahmad ; Agarwal, Poonam</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p727-5adf6638ee1a9e37656a69d70d86076c260db94b8af59d4b35155b67b14c35633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Computer Imaging</topic><topic>Computer Science</topic><topic>Computer Systems Organization and Communication Networks</topic><topic>Data analysis</topic><topic>Data points</topic><topic>Data Structures and Information Theory</topic><topic>Datasets</topic><topic>Error analysis</topic><topic>Inductance</topic><topic>Inductors</topic><topic>Information Systems and Communication Service</topic><topic>Knowledge</topic><topic>Machine learning</topic><topic>Mathematical analysis</topic><topic>Modelling</topic><topic>Neural networks</topic><topic>Optimization</topic><topic>Original Research</topic><topic>Parameters</topic><topic>Pattern Recognition and Graphics</topic><topic>Physical properties</topic><topic>Probability distribution</topic><topic>Simulation</topic><topic>Software</topic><topic>Software Engineering/Programming and Operating Systems</topic><topic>Unleashing the Advances in ICT for Digital Transformation through Data Engineering and Data Analytics</topic><topic>Variables</topic><topic>Vision</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ansari, Mohammad Ahmad</creatorcontrib><creatorcontrib>Agarwal, Poonam</creatorcontrib><collection>ProQuest Computer Science Collection</collection><jtitle>SN computer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ansari, Mohammad Ahmad</au><au>Agarwal, Poonam</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Inductance Modelling of Planar Meander Structure Using RBM and kNN</atitle><jtitle>SN computer science</jtitle><stitle>SN COMPUT. SCI</stitle><date>2024-12-14</date><risdate>2024</risdate><volume>5</volume><issue>8</issue><spage>1169</spage><pages>1169-</pages><issn>2662-995X</issn><eissn>2661-8907</eissn><abstract>Meander Line is a type of inductor that consists of a compact structure while maintaining a certain length of the conducting lines in the combination of vertical and horizontal lines because of this nature it reduces the size of the device. In this paper, the prediction of the meander structured line inductance using the Restricted Boltzmann Machine (RBM) and k-Nearest Neighbor (kNN) has been demonstrated. The modelling for inductance has been done with physical parameters of the meander structure as input parameters with 10, 000 and 1, 20, 120 data points created using analytical formulation and simulation. Analytical data is created using the analytical formula available for the meander structure. The simulation data is created by performing the simulations in the 3D software Computer Simulation Tool (CST) Microwave Studio. The Mean Squared Error (MSE) in the RBM and kNN model is 0.869, 4.34, respectively on analytical data and 8.869 and 1.129, respectively on simulation data. Further, the desired generalizability of the developed model has been validated by creating the new dataset in-between the range selected and also out of the range selected apart from the train-test and the performance of the model showing good agreement.</abstract><cop>Singapore</cop><pub>Springer Nature Singapore</pub><doi>10.1007/s42979-024-03516-7</doi><orcidid>https://orcid.org/0000-0002-7826-161X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2662-995X
ispartof SN computer science, 2024-12, Vol.5 (8), p.1169
issn 2662-995X
2661-8907
language eng
recordid cdi_proquest_journals_3144437268
source SpringerNature Journals
subjects Computer Imaging
Computer Science
Computer Systems Organization and Communication Networks
Data analysis
Data points
Data Structures and Information Theory
Datasets
Error analysis
Inductance
Inductors
Information Systems and Communication Service
Knowledge
Machine learning
Mathematical analysis
Modelling
Neural networks
Optimization
Original Research
Parameters
Pattern Recognition and Graphics
Physical properties
Probability distribution
Simulation
Software
Software Engineering/Programming and Operating Systems
Unleashing the Advances in ICT for Digital Transformation through Data Engineering and Data Analytics
Variables
Vision
title Inductance Modelling of Planar Meander Structure Using RBM and kNN
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T02%3A52%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Inductance%20Modelling%20of%20Planar%20Meander%20Structure%20Using%20RBM%20and%20kNN&rft.jtitle=SN%20computer%20science&rft.au=Ansari,%20Mohammad%20Ahmad&rft.date=2024-12-14&rft.volume=5&rft.issue=8&rft.spage=1169&rft.pages=1169-&rft.issn=2662-995X&rft.eissn=2661-8907&rft_id=info:doi/10.1007/s42979-024-03516-7&rft_dat=%3Cproquest_sprin%3E3144437268%3C/proquest_sprin%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3144437268&rft_id=info:pmid/&rfr_iscdi=true