On Limit Cycles of Autonomous Systems

We consider the problem of the existence of limit cycles for autonomous systems of differential equations. We present quite elementary considerations that can be useful in discussing qualitative issues that arise in the course of ordinary differential equations. We establish that any simple closed c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical sciences (New York, N.Y.) N.Y.), 2024, Vol.286 (1), p.68-88
Hauptverfasser: Ivanova, T. M., Kostin, A. B., Rubinshtein, A. I., Sherstyukov, V. B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 88
container_issue 1
container_start_page 68
container_title Journal of mathematical sciences (New York, N.Y.)
container_volume 286
creator Ivanova, T. M.
Kostin, A. B.
Rubinshtein, A. I.
Sherstyukov, V. B.
description We consider the problem of the existence of limit cycles for autonomous systems of differential equations. We present quite elementary considerations that can be useful in discussing qualitative issues that arise in the course of ordinary differential equations. We establish that any simple closed curve defined by the equation F ( x , y ) = 1 with a sufficiently general function F is a limit cycle for the corresponding autonomous system on the plane (and even for an infinite number of systems depending on the real parameter). These systems are written out explicitly. We analyze in detail several specific examples. Graphic illustrations are provided.
doi_str_mv 10.1007/s10958-024-07491-5
format Article
fullrecord <record><control><sourceid>proquest_sprin</sourceid><recordid>TN_cdi_proquest_journals_3144359571</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3144359571</sourcerecordid><originalsourceid>FETCH-LOGICAL-p725-1379f3548b2aded3b733b56cb12893a2fd7203d61ead142f843292f4164f00813</originalsourceid><addsrcrecordid>eNpFkEtLxDAUhYMoOI7-AVcFcRm9NzdpkuVQfEFhFs4-tNNEOkwfNu1i_r0dK7i6Z_Gdc-Fj7B7hCQH0c0SwynAQkoOWFrm6YCtUmrjRVl3OGbTgRFpes5sYDzCXUkMr9rhtk7xu6jHJTvujj0kXks00dm3XdFNMPk9x9E28ZVehOEZ_93fXbPf6ssveeb59-8g2Oe-1UBxJ20BKmlIUla-o1ESlSvclCmOpEKHSAqhK0RcVShGMJGFFkJjKAGCQ1uxhme2H7nvycXSHbhra-aMjlJKUVfpM0ULFfqjbLz_8UwjurMMtOtysw_3qcIp-AC6jUAI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3144359571</pqid></control><display><type>article</type><title>On Limit Cycles of Autonomous Systems</title><source>SpringerLink Journals - AutoHoldings</source><creator>Ivanova, T. M. ; Kostin, A. B. ; Rubinshtein, A. I. ; Sherstyukov, V. B.</creator><creatorcontrib>Ivanova, T. M. ; Kostin, A. B. ; Rubinshtein, A. I. ; Sherstyukov, V. B.</creatorcontrib><description>We consider the problem of the existence of limit cycles for autonomous systems of differential equations. We present quite elementary considerations that can be useful in discussing qualitative issues that arise in the course of ordinary differential equations. We establish that any simple closed curve defined by the equation F ( x , y ) = 1 with a sufficiently general function F is a limit cycle for the corresponding autonomous system on the plane (and even for an infinite number of systems depending on the real parameter). These systems are written out explicitly. We analyze in detail several specific examples. Graphic illustrations are provided.</description><identifier>ISSN: 1072-3374</identifier><identifier>EISSN: 1573-8795</identifier><identifier>DOI: 10.1007/s10958-024-07491-5</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Differential equations ; Mathematics ; Mathematics and Statistics ; Qualitative analysis</subject><ispartof>Journal of mathematical sciences (New York, N.Y.), 2024, Vol.286 (1), p.68-88</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>Copyright Springer Nature B.V. 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10958-024-07491-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10958-024-07491-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Ivanova, T. M.</creatorcontrib><creatorcontrib>Kostin, A. B.</creatorcontrib><creatorcontrib>Rubinshtein, A. I.</creatorcontrib><creatorcontrib>Sherstyukov, V. B.</creatorcontrib><title>On Limit Cycles of Autonomous Systems</title><title>Journal of mathematical sciences (New York, N.Y.)</title><addtitle>J Math Sci</addtitle><description>We consider the problem of the existence of limit cycles for autonomous systems of differential equations. We present quite elementary considerations that can be useful in discussing qualitative issues that arise in the course of ordinary differential equations. We establish that any simple closed curve defined by the equation F ( x , y ) = 1 with a sufficiently general function F is a limit cycle for the corresponding autonomous system on the plane (and even for an infinite number of systems depending on the real parameter). These systems are written out explicitly. We analyze in detail several specific examples. Graphic illustrations are provided.</description><subject>Differential equations</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Qualitative analysis</subject><issn>1072-3374</issn><issn>1573-8795</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNpFkEtLxDAUhYMoOI7-AVcFcRm9NzdpkuVQfEFhFs4-tNNEOkwfNu1i_r0dK7i6Z_Gdc-Fj7B7hCQH0c0SwynAQkoOWFrm6YCtUmrjRVl3OGbTgRFpes5sYDzCXUkMr9rhtk7xu6jHJTvujj0kXks00dm3XdFNMPk9x9E28ZVehOEZ_93fXbPf6ssveeb59-8g2Oe-1UBxJ20BKmlIUla-o1ESlSvclCmOpEKHSAqhK0RcVShGMJGFFkJjKAGCQ1uxhme2H7nvycXSHbhra-aMjlJKUVfpM0ULFfqjbLz_8UwjurMMtOtysw_3qcIp-AC6jUAI</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Ivanova, T. M.</creator><creator>Kostin, A. B.</creator><creator>Rubinshtein, A. I.</creator><creator>Sherstyukov, V. B.</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope/></search><sort><creationdate>2024</creationdate><title>On Limit Cycles of Autonomous Systems</title><author>Ivanova, T. M. ; Kostin, A. B. ; Rubinshtein, A. I. ; Sherstyukov, V. B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p725-1379f3548b2aded3b733b56cb12893a2fd7203d61ead142f843292f4164f00813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Differential equations</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Qualitative analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ivanova, T. M.</creatorcontrib><creatorcontrib>Kostin, A. B.</creatorcontrib><creatorcontrib>Rubinshtein, A. I.</creatorcontrib><creatorcontrib>Sherstyukov, V. B.</creatorcontrib><jtitle>Journal of mathematical sciences (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ivanova, T. M.</au><au>Kostin, A. B.</au><au>Rubinshtein, A. I.</au><au>Sherstyukov, V. B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On Limit Cycles of Autonomous Systems</atitle><jtitle>Journal of mathematical sciences (New York, N.Y.)</jtitle><stitle>J Math Sci</stitle><date>2024</date><risdate>2024</risdate><volume>286</volume><issue>1</issue><spage>68</spage><epage>88</epage><pages>68-88</pages><issn>1072-3374</issn><eissn>1573-8795</eissn><abstract>We consider the problem of the existence of limit cycles for autonomous systems of differential equations. We present quite elementary considerations that can be useful in discussing qualitative issues that arise in the course of ordinary differential equations. We establish that any simple closed curve defined by the equation F ( x , y ) = 1 with a sufficiently general function F is a limit cycle for the corresponding autonomous system on the plane (and even for an infinite number of systems depending on the real parameter). These systems are written out explicitly. We analyze in detail several specific examples. Graphic illustrations are provided.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s10958-024-07491-5</doi><tpages>21</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1072-3374
ispartof Journal of mathematical sciences (New York, N.Y.), 2024, Vol.286 (1), p.68-88
issn 1072-3374
1573-8795
language eng
recordid cdi_proquest_journals_3144359571
source SpringerLink Journals - AutoHoldings
subjects Differential equations
Mathematics
Mathematics and Statistics
Qualitative analysis
title On Limit Cycles of Autonomous Systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T21%3A36%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20Limit%20Cycles%20of%20Autonomous%20Systems&rft.jtitle=Journal%20of%20mathematical%20sciences%20(New%20York,%20N.Y.)&rft.au=Ivanova,%20T.%20M.&rft.date=2024&rft.volume=286&rft.issue=1&rft.spage=68&rft.epage=88&rft.pages=68-88&rft.issn=1072-3374&rft.eissn=1573-8795&rft_id=info:doi/10.1007/s10958-024-07491-5&rft_dat=%3Cproquest_sprin%3E3144359571%3C/proquest_sprin%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3144359571&rft_id=info:pmid/&rfr_iscdi=true