Effect of butanedione oxime, 3-mercapto-2-propanesulfonate, and histidine on growth and magnetic properties of electrodeposited cobalt on copper substrate

Shorter electron mean free path, lower thermal expansion coefficient, and higher melting point compared to copper have made cobalt a promising alternative to copper in the post-Moore era. It has been extensively explored as a magnetic alloy material for downsized magnetic electronic components, stor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials science. Materials in electronics 2024-12, Vol.35 (36), p.2268, Article 2268
Hauptverfasser: Cao, Wei, Zhu, Zonghan, Li, Qinyuan, Xie, Jie, Cui, Liangduan, Zhu, Min, Zhang, Han, He, Wei, Huang, Qing, Wang, Yuecong, Chen, Yuanming
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 36
container_start_page 2268
container_title Journal of materials science. Materials in electronics
container_volume 35
creator Cao, Wei
Zhu, Zonghan
Li, Qinyuan
Xie, Jie
Cui, Liangduan
Zhu, Min
Zhang, Han
He, Wei
Huang, Qing
Wang, Yuecong
Chen, Yuanming
description Shorter electron mean free path, lower thermal expansion coefficient, and higher melting point compared to copper have made cobalt a promising alternative to copper in the post-Moore era. It has been extensively explored as a magnetic alloy material for downsized magnetic electronic components, storage devices, and specialized devices. Nevertheless, a lack of research on additives for cobalt plating solutions and unclear mechanism of the electroplating process, pose challenges in achieving cobalt plating layers with desired specifications. Electrodeposition with organic additives was employed to successfully producing cobalt plating layers. Electrochemical tests were performed to investigate the polarization effects of butanedione oxime (DMG), sodium 3-mercapto-2-propanesulfonate (SPS), and histidine (HIS) during cobalt electrodeposition to find out the inhibitory capacities of these additives. The adsorption behavior of the additives and interactions of the functional groups were analyzed by electron density and energy distribution of the additives based on quantum chemical calculations. The findings suggested that during the electrodeposition of cobalt, adsorption sites for molecules varied from the imine group of DMG to sulfonic acid group of SPS, and to imidazole group of HIS. HIS-assisted electrodeposition generated cobalt layer with pronounced soft magnetic properties of the lowest coercivity of 27.3 Oe and highest saturation magnetization intensity of 0.958 emu/g.
doi_str_mv 10.1007/s10854-024-13997-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3144197521</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3144197521</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-293cc1e1300a7acc6cf3f59b8b9ebcf5fd6bc88a2803880006fbc0da73d986023</originalsourceid><addsrcrecordid>eNp9kUFrGzEQhUVpII7bP5CToNeqGUm7Xu2xGCcpGHJJoDeh1Y4cGXu1lbQ0-Sv5tdXagdx6GtC8770Rj5BrDj84QHOTOKi6YiAqxmXbNgw-kQWvG8kqJX5_Jgto64ZVtRCX5CqlPQCsKqkW5G3jHNpMg6PdlM2AvQ8D0vDij_idSnbEaM2YAxNsjGEsgjQdXBhMLmsz9PTZp-x7PzMD3cXwNz-f3o9mN2D2ls4YxuwxzSF4KGkx9DiG5DP21IbOHPIM2zAWIU1Tl3Is_l_IhTOHhF_f55I83W4e1_ds-3D3a_1zy6wAyEy00lqOXAKYxli7sk66uu1U12JnXe36VWeVMkKBVGr-uOss9KaRfatWIOSSfDv7lkv_TJiy3ocpDiVSS15VvG1qwYtKnFU2hpQiOj1GfzTxVXPQcwf63IEuHehTBxoKJM9QKuJhh_HD-j_UP0qKjbs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3144197521</pqid></control><display><type>article</type><title>Effect of butanedione oxime, 3-mercapto-2-propanesulfonate, and histidine on growth and magnetic properties of electrodeposited cobalt on copper substrate</title><source>Springer Nature - Complete Springer Journals</source><creator>Cao, Wei ; Zhu, Zonghan ; Li, Qinyuan ; Xie, Jie ; Cui, Liangduan ; Zhu, Min ; Zhang, Han ; He, Wei ; Huang, Qing ; Wang, Yuecong ; Chen, Yuanming</creator><creatorcontrib>Cao, Wei ; Zhu, Zonghan ; Li, Qinyuan ; Xie, Jie ; Cui, Liangduan ; Zhu, Min ; Zhang, Han ; He, Wei ; Huang, Qing ; Wang, Yuecong ; Chen, Yuanming</creatorcontrib><description>Shorter electron mean free path, lower thermal expansion coefficient, and higher melting point compared to copper have made cobalt a promising alternative to copper in the post-Moore era. It has been extensively explored as a magnetic alloy material for downsized magnetic electronic components, storage devices, and specialized devices. Nevertheless, a lack of research on additives for cobalt plating solutions and unclear mechanism of the electroplating process, pose challenges in achieving cobalt plating layers with desired specifications. Electrodeposition with organic additives was employed to successfully producing cobalt plating layers. Electrochemical tests were performed to investigate the polarization effects of butanedione oxime (DMG), sodium 3-mercapto-2-propanesulfonate (SPS), and histidine (HIS) during cobalt electrodeposition to find out the inhibitory capacities of these additives. The adsorption behavior of the additives and interactions of the functional groups were analyzed by electron density and energy distribution of the additives based on quantum chemical calculations. The findings suggested that during the electrodeposition of cobalt, adsorption sites for molecules varied from the imine group of DMG to sulfonic acid group of SPS, and to imidazole group of HIS. HIS-assisted electrodeposition generated cobalt layer with pronounced soft magnetic properties of the lowest coercivity of 27.3 Oe and highest saturation magnetization intensity of 0.958 emu/g.</description><identifier>ISSN: 0957-4522</identifier><identifier>EISSN: 1573-482X</identifier><identifier>DOI: 10.1007/s10854-024-13997-0</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Additives ; Adsorption ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Cobalt ; Cobalt plating ; Coercivity ; Copper ; Copper plating ; Electrodeposition ; Electron density ; Electronic components ; Electroplating ; Energy distribution ; Functional groups ; Histidine ; Imidazole ; Magnetic alloys ; Magnetic properties ; Magnetic saturation ; Materials Science ; Melting points ; Optical and Electronic Materials ; Quantum chemistry ; Substrates ; Sulfonic acid ; Thermal expansion</subject><ispartof>Journal of materials science. Materials in electronics, 2024-12, Vol.35 (36), p.2268, Article 2268</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>Copyright Springer Nature B.V. Dec 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c200t-293cc1e1300a7acc6cf3f59b8b9ebcf5fd6bc88a2803880006fbc0da73d986023</cites><orcidid>0000-0001-7955-3350</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10854-024-13997-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10854-024-13997-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Cao, Wei</creatorcontrib><creatorcontrib>Zhu, Zonghan</creatorcontrib><creatorcontrib>Li, Qinyuan</creatorcontrib><creatorcontrib>Xie, Jie</creatorcontrib><creatorcontrib>Cui, Liangduan</creatorcontrib><creatorcontrib>Zhu, Min</creatorcontrib><creatorcontrib>Zhang, Han</creatorcontrib><creatorcontrib>He, Wei</creatorcontrib><creatorcontrib>Huang, Qing</creatorcontrib><creatorcontrib>Wang, Yuecong</creatorcontrib><creatorcontrib>Chen, Yuanming</creatorcontrib><title>Effect of butanedione oxime, 3-mercapto-2-propanesulfonate, and histidine on growth and magnetic properties of electrodeposited cobalt on copper substrate</title><title>Journal of materials science. Materials in electronics</title><addtitle>J Mater Sci: Mater Electron</addtitle><description>Shorter electron mean free path, lower thermal expansion coefficient, and higher melting point compared to copper have made cobalt a promising alternative to copper in the post-Moore era. It has been extensively explored as a magnetic alloy material for downsized magnetic electronic components, storage devices, and specialized devices. Nevertheless, a lack of research on additives for cobalt plating solutions and unclear mechanism of the electroplating process, pose challenges in achieving cobalt plating layers with desired specifications. Electrodeposition with organic additives was employed to successfully producing cobalt plating layers. Electrochemical tests were performed to investigate the polarization effects of butanedione oxime (DMG), sodium 3-mercapto-2-propanesulfonate (SPS), and histidine (HIS) during cobalt electrodeposition to find out the inhibitory capacities of these additives. The adsorption behavior of the additives and interactions of the functional groups were analyzed by electron density and energy distribution of the additives based on quantum chemical calculations. The findings suggested that during the electrodeposition of cobalt, adsorption sites for molecules varied from the imine group of DMG to sulfonic acid group of SPS, and to imidazole group of HIS. HIS-assisted electrodeposition generated cobalt layer with pronounced soft magnetic properties of the lowest coercivity of 27.3 Oe and highest saturation magnetization intensity of 0.958 emu/g.</description><subject>Additives</subject><subject>Adsorption</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Cobalt</subject><subject>Cobalt plating</subject><subject>Coercivity</subject><subject>Copper</subject><subject>Copper plating</subject><subject>Electrodeposition</subject><subject>Electron density</subject><subject>Electronic components</subject><subject>Electroplating</subject><subject>Energy distribution</subject><subject>Functional groups</subject><subject>Histidine</subject><subject>Imidazole</subject><subject>Magnetic alloys</subject><subject>Magnetic properties</subject><subject>Magnetic saturation</subject><subject>Materials Science</subject><subject>Melting points</subject><subject>Optical and Electronic Materials</subject><subject>Quantum chemistry</subject><subject>Substrates</subject><subject>Sulfonic acid</subject><subject>Thermal expansion</subject><issn>0957-4522</issn><issn>1573-482X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kUFrGzEQhUVpII7bP5CToNeqGUm7Xu2xGCcpGHJJoDeh1Y4cGXu1lbQ0-Sv5tdXagdx6GtC8770Rj5BrDj84QHOTOKi6YiAqxmXbNgw-kQWvG8kqJX5_Jgto64ZVtRCX5CqlPQCsKqkW5G3jHNpMg6PdlM2AvQ8D0vDij_idSnbEaM2YAxNsjGEsgjQdXBhMLmsz9PTZp-x7PzMD3cXwNz-f3o9mN2D2ls4YxuwxzSF4KGkx9DiG5DP21IbOHPIM2zAWIU1Tl3Is_l_IhTOHhF_f55I83W4e1_ds-3D3a_1zy6wAyEy00lqOXAKYxli7sk66uu1U12JnXe36VWeVMkKBVGr-uOss9KaRfatWIOSSfDv7lkv_TJiy3ocpDiVSS15VvG1qwYtKnFU2hpQiOj1GfzTxVXPQcwf63IEuHehTBxoKJM9QKuJhh_HD-j_UP0qKjbs</recordid><startdate>20241201</startdate><enddate>20241201</enddate><creator>Cao, Wei</creator><creator>Zhu, Zonghan</creator><creator>Li, Qinyuan</creator><creator>Xie, Jie</creator><creator>Cui, Liangduan</creator><creator>Zhu, Min</creator><creator>Zhang, Han</creator><creator>He, Wei</creator><creator>Huang, Qing</creator><creator>Wang, Yuecong</creator><creator>Chen, Yuanming</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-7955-3350</orcidid></search><sort><creationdate>20241201</creationdate><title>Effect of butanedione oxime, 3-mercapto-2-propanesulfonate, and histidine on growth and magnetic properties of electrodeposited cobalt on copper substrate</title><author>Cao, Wei ; Zhu, Zonghan ; Li, Qinyuan ; Xie, Jie ; Cui, Liangduan ; Zhu, Min ; Zhang, Han ; He, Wei ; Huang, Qing ; Wang, Yuecong ; Chen, Yuanming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-293cc1e1300a7acc6cf3f59b8b9ebcf5fd6bc88a2803880006fbc0da73d986023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Additives</topic><topic>Adsorption</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Cobalt</topic><topic>Cobalt plating</topic><topic>Coercivity</topic><topic>Copper</topic><topic>Copper plating</topic><topic>Electrodeposition</topic><topic>Electron density</topic><topic>Electronic components</topic><topic>Electroplating</topic><topic>Energy distribution</topic><topic>Functional groups</topic><topic>Histidine</topic><topic>Imidazole</topic><topic>Magnetic alloys</topic><topic>Magnetic properties</topic><topic>Magnetic saturation</topic><topic>Materials Science</topic><topic>Melting points</topic><topic>Optical and Electronic Materials</topic><topic>Quantum chemistry</topic><topic>Substrates</topic><topic>Sulfonic acid</topic><topic>Thermal expansion</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cao, Wei</creatorcontrib><creatorcontrib>Zhu, Zonghan</creatorcontrib><creatorcontrib>Li, Qinyuan</creatorcontrib><creatorcontrib>Xie, Jie</creatorcontrib><creatorcontrib>Cui, Liangduan</creatorcontrib><creatorcontrib>Zhu, Min</creatorcontrib><creatorcontrib>Zhang, Han</creatorcontrib><creatorcontrib>He, Wei</creatorcontrib><creatorcontrib>Huang, Qing</creatorcontrib><creatorcontrib>Wang, Yuecong</creatorcontrib><creatorcontrib>Chen, Yuanming</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of materials science. Materials in electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cao, Wei</au><au>Zhu, Zonghan</au><au>Li, Qinyuan</au><au>Xie, Jie</au><au>Cui, Liangduan</au><au>Zhu, Min</au><au>Zhang, Han</au><au>He, Wei</au><au>Huang, Qing</au><au>Wang, Yuecong</au><au>Chen, Yuanming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of butanedione oxime, 3-mercapto-2-propanesulfonate, and histidine on growth and magnetic properties of electrodeposited cobalt on copper substrate</atitle><jtitle>Journal of materials science. Materials in electronics</jtitle><stitle>J Mater Sci: Mater Electron</stitle><date>2024-12-01</date><risdate>2024</risdate><volume>35</volume><issue>36</issue><spage>2268</spage><pages>2268-</pages><artnum>2268</artnum><issn>0957-4522</issn><eissn>1573-482X</eissn><abstract>Shorter electron mean free path, lower thermal expansion coefficient, and higher melting point compared to copper have made cobalt a promising alternative to copper in the post-Moore era. It has been extensively explored as a magnetic alloy material for downsized magnetic electronic components, storage devices, and specialized devices. Nevertheless, a lack of research on additives for cobalt plating solutions and unclear mechanism of the electroplating process, pose challenges in achieving cobalt plating layers with desired specifications. Electrodeposition with organic additives was employed to successfully producing cobalt plating layers. Electrochemical tests were performed to investigate the polarization effects of butanedione oxime (DMG), sodium 3-mercapto-2-propanesulfonate (SPS), and histidine (HIS) during cobalt electrodeposition to find out the inhibitory capacities of these additives. The adsorption behavior of the additives and interactions of the functional groups were analyzed by electron density and energy distribution of the additives based on quantum chemical calculations. The findings suggested that during the electrodeposition of cobalt, adsorption sites for molecules varied from the imine group of DMG to sulfonic acid group of SPS, and to imidazole group of HIS. HIS-assisted electrodeposition generated cobalt layer with pronounced soft magnetic properties of the lowest coercivity of 27.3 Oe and highest saturation magnetization intensity of 0.958 emu/g.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10854-024-13997-0</doi><orcidid>https://orcid.org/0000-0001-7955-3350</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0957-4522
ispartof Journal of materials science. Materials in electronics, 2024-12, Vol.35 (36), p.2268, Article 2268
issn 0957-4522
1573-482X
language eng
recordid cdi_proquest_journals_3144197521
source Springer Nature - Complete Springer Journals
subjects Additives
Adsorption
Characterization and Evaluation of Materials
Chemistry and Materials Science
Cobalt
Cobalt plating
Coercivity
Copper
Copper plating
Electrodeposition
Electron density
Electronic components
Electroplating
Energy distribution
Functional groups
Histidine
Imidazole
Magnetic alloys
Magnetic properties
Magnetic saturation
Materials Science
Melting points
Optical and Electronic Materials
Quantum chemistry
Substrates
Sulfonic acid
Thermal expansion
title Effect of butanedione oxime, 3-mercapto-2-propanesulfonate, and histidine on growth and magnetic properties of electrodeposited cobalt on copper substrate
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T20%3A58%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20butanedione%20oxime,%203-mercapto-2-propanesulfonate,%20and%20histidine%20on%20growth%20and%20magnetic%20properties%20of%20electrodeposited%20cobalt%20on%20copper%20substrate&rft.jtitle=Journal%20of%20materials%20science.%20Materials%20in%20electronics&rft.au=Cao,%20Wei&rft.date=2024-12-01&rft.volume=35&rft.issue=36&rft.spage=2268&rft.pages=2268-&rft.artnum=2268&rft.issn=0957-4522&rft.eissn=1573-482X&rft_id=info:doi/10.1007/s10854-024-13997-0&rft_dat=%3Cproquest_cross%3E3144197521%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3144197521&rft_id=info:pmid/&rfr_iscdi=true