Effect of butanedione oxime, 3-mercapto-2-propanesulfonate, and histidine on growth and magnetic properties of electrodeposited cobalt on copper substrate
Shorter electron mean free path, lower thermal expansion coefficient, and higher melting point compared to copper have made cobalt a promising alternative to copper in the post-Moore era. It has been extensively explored as a magnetic alloy material for downsized magnetic electronic components, stor...
Gespeichert in:
Veröffentlicht in: | Journal of materials science. Materials in electronics 2024-12, Vol.35 (36), p.2268, Article 2268 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 36 |
container_start_page | 2268 |
container_title | Journal of materials science. Materials in electronics |
container_volume | 35 |
creator | Cao, Wei Zhu, Zonghan Li, Qinyuan Xie, Jie Cui, Liangduan Zhu, Min Zhang, Han He, Wei Huang, Qing Wang, Yuecong Chen, Yuanming |
description | Shorter electron mean free path, lower thermal expansion coefficient, and higher melting point compared to copper have made cobalt a promising alternative to copper in the post-Moore era. It has been extensively explored as a magnetic alloy material for downsized magnetic electronic components, storage devices, and specialized devices. Nevertheless, a lack of research on additives for cobalt plating solutions and unclear mechanism of the electroplating process, pose challenges in achieving cobalt plating layers with desired specifications. Electrodeposition with organic additives was employed to successfully producing cobalt plating layers. Electrochemical tests were performed to investigate the polarization effects of butanedione oxime (DMG), sodium 3-mercapto-2-propanesulfonate (SPS), and histidine (HIS) during cobalt electrodeposition to find out the inhibitory capacities of these additives. The adsorption behavior of the additives and interactions of the functional groups were analyzed by electron density and energy distribution of the additives based on quantum chemical calculations. The findings suggested that during the electrodeposition of cobalt, adsorption sites for molecules varied from the imine group of DMG to sulfonic acid group of SPS, and to imidazole group of HIS. HIS-assisted electrodeposition generated cobalt layer with pronounced soft magnetic properties of the lowest coercivity of 27.3 Oe and highest saturation magnetization intensity of 0.958 emu/g. |
doi_str_mv | 10.1007/s10854-024-13997-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3144197521</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3144197521</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-293cc1e1300a7acc6cf3f59b8b9ebcf5fd6bc88a2803880006fbc0da73d986023</originalsourceid><addsrcrecordid>eNp9kUFrGzEQhUVpII7bP5CToNeqGUm7Xu2xGCcpGHJJoDeh1Y4cGXu1lbQ0-Sv5tdXagdx6GtC8770Rj5BrDj84QHOTOKi6YiAqxmXbNgw-kQWvG8kqJX5_Jgto64ZVtRCX5CqlPQCsKqkW5G3jHNpMg6PdlM2AvQ8D0vDij_idSnbEaM2YAxNsjGEsgjQdXBhMLmsz9PTZp-x7PzMD3cXwNz-f3o9mN2D2ls4YxuwxzSF4KGkx9DiG5DP21IbOHPIM2zAWIU1Tl3Is_l_IhTOHhF_f55I83W4e1_ds-3D3a_1zy6wAyEy00lqOXAKYxli7sk66uu1U12JnXe36VWeVMkKBVGr-uOss9KaRfatWIOSSfDv7lkv_TJiy3ocpDiVSS15VvG1qwYtKnFU2hpQiOj1GfzTxVXPQcwf63IEuHehTBxoKJM9QKuJhh_HD-j_UP0qKjbs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3144197521</pqid></control><display><type>article</type><title>Effect of butanedione oxime, 3-mercapto-2-propanesulfonate, and histidine on growth and magnetic properties of electrodeposited cobalt on copper substrate</title><source>Springer Nature - Complete Springer Journals</source><creator>Cao, Wei ; Zhu, Zonghan ; Li, Qinyuan ; Xie, Jie ; Cui, Liangduan ; Zhu, Min ; Zhang, Han ; He, Wei ; Huang, Qing ; Wang, Yuecong ; Chen, Yuanming</creator><creatorcontrib>Cao, Wei ; Zhu, Zonghan ; Li, Qinyuan ; Xie, Jie ; Cui, Liangduan ; Zhu, Min ; Zhang, Han ; He, Wei ; Huang, Qing ; Wang, Yuecong ; Chen, Yuanming</creatorcontrib><description>Shorter electron mean free path, lower thermal expansion coefficient, and higher melting point compared to copper have made cobalt a promising alternative to copper in the post-Moore era. It has been extensively explored as a magnetic alloy material for downsized magnetic electronic components, storage devices, and specialized devices. Nevertheless, a lack of research on additives for cobalt plating solutions and unclear mechanism of the electroplating process, pose challenges in achieving cobalt plating layers with desired specifications. Electrodeposition with organic additives was employed to successfully producing cobalt plating layers. Electrochemical tests were performed to investigate the polarization effects of butanedione oxime (DMG), sodium 3-mercapto-2-propanesulfonate (SPS), and histidine (HIS) during cobalt electrodeposition to find out the inhibitory capacities of these additives. The adsorption behavior of the additives and interactions of the functional groups were analyzed by electron density and energy distribution of the additives based on quantum chemical calculations. The findings suggested that during the electrodeposition of cobalt, adsorption sites for molecules varied from the imine group of DMG to sulfonic acid group of SPS, and to imidazole group of HIS. HIS-assisted electrodeposition generated cobalt layer with pronounced soft magnetic properties of the lowest coercivity of 27.3 Oe and highest saturation magnetization intensity of 0.958 emu/g.</description><identifier>ISSN: 0957-4522</identifier><identifier>EISSN: 1573-482X</identifier><identifier>DOI: 10.1007/s10854-024-13997-0</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Additives ; Adsorption ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Cobalt ; Cobalt plating ; Coercivity ; Copper ; Copper plating ; Electrodeposition ; Electron density ; Electronic components ; Electroplating ; Energy distribution ; Functional groups ; Histidine ; Imidazole ; Magnetic alloys ; Magnetic properties ; Magnetic saturation ; Materials Science ; Melting points ; Optical and Electronic Materials ; Quantum chemistry ; Substrates ; Sulfonic acid ; Thermal expansion</subject><ispartof>Journal of materials science. Materials in electronics, 2024-12, Vol.35 (36), p.2268, Article 2268</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>Copyright Springer Nature B.V. Dec 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c200t-293cc1e1300a7acc6cf3f59b8b9ebcf5fd6bc88a2803880006fbc0da73d986023</cites><orcidid>0000-0001-7955-3350</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10854-024-13997-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10854-024-13997-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Cao, Wei</creatorcontrib><creatorcontrib>Zhu, Zonghan</creatorcontrib><creatorcontrib>Li, Qinyuan</creatorcontrib><creatorcontrib>Xie, Jie</creatorcontrib><creatorcontrib>Cui, Liangduan</creatorcontrib><creatorcontrib>Zhu, Min</creatorcontrib><creatorcontrib>Zhang, Han</creatorcontrib><creatorcontrib>He, Wei</creatorcontrib><creatorcontrib>Huang, Qing</creatorcontrib><creatorcontrib>Wang, Yuecong</creatorcontrib><creatorcontrib>Chen, Yuanming</creatorcontrib><title>Effect of butanedione oxime, 3-mercapto-2-propanesulfonate, and histidine on growth and magnetic properties of electrodeposited cobalt on copper substrate</title><title>Journal of materials science. Materials in electronics</title><addtitle>J Mater Sci: Mater Electron</addtitle><description>Shorter electron mean free path, lower thermal expansion coefficient, and higher melting point compared to copper have made cobalt a promising alternative to copper in the post-Moore era. It has been extensively explored as a magnetic alloy material for downsized magnetic electronic components, storage devices, and specialized devices. Nevertheless, a lack of research on additives for cobalt plating solutions and unclear mechanism of the electroplating process, pose challenges in achieving cobalt plating layers with desired specifications. Electrodeposition with organic additives was employed to successfully producing cobalt plating layers. Electrochemical tests were performed to investigate the polarization effects of butanedione oxime (DMG), sodium 3-mercapto-2-propanesulfonate (SPS), and histidine (HIS) during cobalt electrodeposition to find out the inhibitory capacities of these additives. The adsorption behavior of the additives and interactions of the functional groups were analyzed by electron density and energy distribution of the additives based on quantum chemical calculations. The findings suggested that during the electrodeposition of cobalt, adsorption sites for molecules varied from the imine group of DMG to sulfonic acid group of SPS, and to imidazole group of HIS. HIS-assisted electrodeposition generated cobalt layer with pronounced soft magnetic properties of the lowest coercivity of 27.3 Oe and highest saturation magnetization intensity of 0.958 emu/g.</description><subject>Additives</subject><subject>Adsorption</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Cobalt</subject><subject>Cobalt plating</subject><subject>Coercivity</subject><subject>Copper</subject><subject>Copper plating</subject><subject>Electrodeposition</subject><subject>Electron density</subject><subject>Electronic components</subject><subject>Electroplating</subject><subject>Energy distribution</subject><subject>Functional groups</subject><subject>Histidine</subject><subject>Imidazole</subject><subject>Magnetic alloys</subject><subject>Magnetic properties</subject><subject>Magnetic saturation</subject><subject>Materials Science</subject><subject>Melting points</subject><subject>Optical and Electronic Materials</subject><subject>Quantum chemistry</subject><subject>Substrates</subject><subject>Sulfonic acid</subject><subject>Thermal expansion</subject><issn>0957-4522</issn><issn>1573-482X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kUFrGzEQhUVpII7bP5CToNeqGUm7Xu2xGCcpGHJJoDeh1Y4cGXu1lbQ0-Sv5tdXagdx6GtC8770Rj5BrDj84QHOTOKi6YiAqxmXbNgw-kQWvG8kqJX5_Jgto64ZVtRCX5CqlPQCsKqkW5G3jHNpMg6PdlM2AvQ8D0vDij_idSnbEaM2YAxNsjGEsgjQdXBhMLmsz9PTZp-x7PzMD3cXwNz-f3o9mN2D2ls4YxuwxzSF4KGkx9DiG5DP21IbOHPIM2zAWIU1Tl3Is_l_IhTOHhF_f55I83W4e1_ds-3D3a_1zy6wAyEy00lqOXAKYxli7sk66uu1U12JnXe36VWeVMkKBVGr-uOss9KaRfatWIOSSfDv7lkv_TJiy3ocpDiVSS15VvG1qwYtKnFU2hpQiOj1GfzTxVXPQcwf63IEuHehTBxoKJM9QKuJhh_HD-j_UP0qKjbs</recordid><startdate>20241201</startdate><enddate>20241201</enddate><creator>Cao, Wei</creator><creator>Zhu, Zonghan</creator><creator>Li, Qinyuan</creator><creator>Xie, Jie</creator><creator>Cui, Liangduan</creator><creator>Zhu, Min</creator><creator>Zhang, Han</creator><creator>He, Wei</creator><creator>Huang, Qing</creator><creator>Wang, Yuecong</creator><creator>Chen, Yuanming</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-7955-3350</orcidid></search><sort><creationdate>20241201</creationdate><title>Effect of butanedione oxime, 3-mercapto-2-propanesulfonate, and histidine on growth and magnetic properties of electrodeposited cobalt on copper substrate</title><author>Cao, Wei ; Zhu, Zonghan ; Li, Qinyuan ; Xie, Jie ; Cui, Liangduan ; Zhu, Min ; Zhang, Han ; He, Wei ; Huang, Qing ; Wang, Yuecong ; Chen, Yuanming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-293cc1e1300a7acc6cf3f59b8b9ebcf5fd6bc88a2803880006fbc0da73d986023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Additives</topic><topic>Adsorption</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Cobalt</topic><topic>Cobalt plating</topic><topic>Coercivity</topic><topic>Copper</topic><topic>Copper plating</topic><topic>Electrodeposition</topic><topic>Electron density</topic><topic>Electronic components</topic><topic>Electroplating</topic><topic>Energy distribution</topic><topic>Functional groups</topic><topic>Histidine</topic><topic>Imidazole</topic><topic>Magnetic alloys</topic><topic>Magnetic properties</topic><topic>Magnetic saturation</topic><topic>Materials Science</topic><topic>Melting points</topic><topic>Optical and Electronic Materials</topic><topic>Quantum chemistry</topic><topic>Substrates</topic><topic>Sulfonic acid</topic><topic>Thermal expansion</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cao, Wei</creatorcontrib><creatorcontrib>Zhu, Zonghan</creatorcontrib><creatorcontrib>Li, Qinyuan</creatorcontrib><creatorcontrib>Xie, Jie</creatorcontrib><creatorcontrib>Cui, Liangduan</creatorcontrib><creatorcontrib>Zhu, Min</creatorcontrib><creatorcontrib>Zhang, Han</creatorcontrib><creatorcontrib>He, Wei</creatorcontrib><creatorcontrib>Huang, Qing</creatorcontrib><creatorcontrib>Wang, Yuecong</creatorcontrib><creatorcontrib>Chen, Yuanming</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of materials science. Materials in electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cao, Wei</au><au>Zhu, Zonghan</au><au>Li, Qinyuan</au><au>Xie, Jie</au><au>Cui, Liangduan</au><au>Zhu, Min</au><au>Zhang, Han</au><au>He, Wei</au><au>Huang, Qing</au><au>Wang, Yuecong</au><au>Chen, Yuanming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of butanedione oxime, 3-mercapto-2-propanesulfonate, and histidine on growth and magnetic properties of electrodeposited cobalt on copper substrate</atitle><jtitle>Journal of materials science. Materials in electronics</jtitle><stitle>J Mater Sci: Mater Electron</stitle><date>2024-12-01</date><risdate>2024</risdate><volume>35</volume><issue>36</issue><spage>2268</spage><pages>2268-</pages><artnum>2268</artnum><issn>0957-4522</issn><eissn>1573-482X</eissn><abstract>Shorter electron mean free path, lower thermal expansion coefficient, and higher melting point compared to copper have made cobalt a promising alternative to copper in the post-Moore era. It has been extensively explored as a magnetic alloy material for downsized magnetic electronic components, storage devices, and specialized devices. Nevertheless, a lack of research on additives for cobalt plating solutions and unclear mechanism of the electroplating process, pose challenges in achieving cobalt plating layers with desired specifications. Electrodeposition with organic additives was employed to successfully producing cobalt plating layers. Electrochemical tests were performed to investigate the polarization effects of butanedione oxime (DMG), sodium 3-mercapto-2-propanesulfonate (SPS), and histidine (HIS) during cobalt electrodeposition to find out the inhibitory capacities of these additives. The adsorption behavior of the additives and interactions of the functional groups were analyzed by electron density and energy distribution of the additives based on quantum chemical calculations. The findings suggested that during the electrodeposition of cobalt, adsorption sites for molecules varied from the imine group of DMG to sulfonic acid group of SPS, and to imidazole group of HIS. HIS-assisted electrodeposition generated cobalt layer with pronounced soft magnetic properties of the lowest coercivity of 27.3 Oe and highest saturation magnetization intensity of 0.958 emu/g.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10854-024-13997-0</doi><orcidid>https://orcid.org/0000-0001-7955-3350</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0957-4522 |
ispartof | Journal of materials science. Materials in electronics, 2024-12, Vol.35 (36), p.2268, Article 2268 |
issn | 0957-4522 1573-482X |
language | eng |
recordid | cdi_proquest_journals_3144197521 |
source | Springer Nature - Complete Springer Journals |
subjects | Additives Adsorption Characterization and Evaluation of Materials Chemistry and Materials Science Cobalt Cobalt plating Coercivity Copper Copper plating Electrodeposition Electron density Electronic components Electroplating Energy distribution Functional groups Histidine Imidazole Magnetic alloys Magnetic properties Magnetic saturation Materials Science Melting points Optical and Electronic Materials Quantum chemistry Substrates Sulfonic acid Thermal expansion |
title | Effect of butanedione oxime, 3-mercapto-2-propanesulfonate, and histidine on growth and magnetic properties of electrodeposited cobalt on copper substrate |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T20%3A58%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20butanedione%20oxime,%203-mercapto-2-propanesulfonate,%20and%20histidine%20on%20growth%20and%20magnetic%20properties%20of%20electrodeposited%20cobalt%20on%20copper%20substrate&rft.jtitle=Journal%20of%20materials%20science.%20Materials%20in%20electronics&rft.au=Cao,%20Wei&rft.date=2024-12-01&rft.volume=35&rft.issue=36&rft.spage=2268&rft.pages=2268-&rft.artnum=2268&rft.issn=0957-4522&rft.eissn=1573-482X&rft_id=info:doi/10.1007/s10854-024-13997-0&rft_dat=%3Cproquest_cross%3E3144197521%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3144197521&rft_id=info:pmid/&rfr_iscdi=true |