Enhancing Environmental Policy Decisions in Korea and Japan Through AI-Driven Air Pollution Forecast
(1) Background: Although numerous artificial intelligence (AI)-based air pollution prediction models have been proposed, research that links key pollution drivers, such as regional industrial facilities, to actionable policy recommendations is required. (2) Methods: This study employs the radial bas...
Gespeichert in:
Veröffentlicht in: | Sustainability 2024-12, Vol.16 (23), p.10436 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 23 |
container_start_page | 10436 |
container_title | Sustainability |
container_volume | 16 |
creator | Kim, Yushin Kim, Jungin Cho, Sunghyun Sim, Hyein Kim, Ji-Young |
description | (1) Background: Although numerous artificial intelligence (AI)-based air pollution prediction models have been proposed, research that links key pollution drivers, such as regional industrial facilities, to actionable policy recommendations is required. (2) Methods: This study employs the radial basis function (RBF) and spatial lag features to capture spatial interactions among regions, utilizing a transformer model for analysis. The model was trained on air quality and industrial data from South Korea (2010–2022) and Japan (2017–2020). (3) Results: The transformer model achieved a mean squared error of 0.045 for the Korean dataset and 0.166 for the Japanese dataset, outperforming benchmark models, including Support Vector Regression, neural networks, and the AutoRegressive Integrated Moving Average model. (4) Conclusions: By capturing complex spatial dynamics, the proposed model provides valuable insights that can assist policymakers in developing effective, data-driven strategies for air pollution reduction at the national and regional levels, thereby supporting the broader goals of sustainability through informed, equitable environmental interventions. |
doi_str_mv | 10.3390/su162310436 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_3144179846</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A820019539</galeid><sourcerecordid>A820019539</sourcerecordid><originalsourceid>FETCH-LOGICAL-c222t-73013214e347fb23e6a33470206d06d30bd62af57616bc415d4e2a75a48effe43</originalsourceid><addsrcrecordid>eNpVkU1LAzEQhoMoWLQn_0DAk8jWfG22e1z6odWCovW8pNlkm7JNarJb7L83pR7amYF5GZ535jAA3GE0oDRHT6HDnFCMGOUXoEdQhhOMUnR5oq9BP4Q1ikEpzjHvgWpiV8JKY2s4sTvjnd0o24oGfrjGyD0cK2mCcTZAY-Gb80pAYSv4KrbCwsXKu65ewWKWjL3ZKQsL4w_OpmujB04jL0Vob8GVFk1Q_f9-A76nk8XoJZm_P89GxTyRhJA2ySjClGCmKMv0klDFBY0SEcSrWBQtK06ETjOO-VIynFZMEZGlgg2V1orRG3B_3Lv17qdToS3XrvM2niwpZgxn-ZDxSA2OVC0aVRqrXeuFjFmpjZHOKm3ivBgShHCe0jwaHs4MkWnVb1uLLoRy9vV5zj4eWeldCF7pcuvNRvh9iVF5eFN58ib6B5N9gjA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3144179846</pqid></control><display><type>article</type><title>Enhancing Environmental Policy Decisions in Korea and Japan Through AI-Driven Air Pollution Forecast</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Kim, Yushin ; Kim, Jungin ; Cho, Sunghyun ; Sim, Hyein ; Kim, Ji-Young</creator><creatorcontrib>Kim, Yushin ; Kim, Jungin ; Cho, Sunghyun ; Sim, Hyein ; Kim, Ji-Young</creatorcontrib><description>(1) Background: Although numerous artificial intelligence (AI)-based air pollution prediction models have been proposed, research that links key pollution drivers, such as regional industrial facilities, to actionable policy recommendations is required. (2) Methods: This study employs the radial basis function (RBF) and spatial lag features to capture spatial interactions among regions, utilizing a transformer model for analysis. The model was trained on air quality and industrial data from South Korea (2010–2022) and Japan (2017–2020). (3) Results: The transformer model achieved a mean squared error of 0.045 for the Korean dataset and 0.166 for the Japanese dataset, outperforming benchmark models, including Support Vector Regression, neural networks, and the AutoRegressive Integrated Moving Average model. (4) Conclusions: By capturing complex spatial dynamics, the proposed model provides valuable insights that can assist policymakers in developing effective, data-driven strategies for air pollution reduction at the national and regional levels, thereby supporting the broader goals of sustainability through informed, equitable environmental interventions.</description><identifier>ISSN: 2071-1050</identifier><identifier>EISSN: 2071-1050</identifier><identifier>DOI: 10.3390/su162310436</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Air pollution ; Air quality ; Artificial intelligence ; Computational linguistics ; Datasets ; Environmental policy ; Factories ; Language processing ; Natural language interfaces ; Neural networks ; Outdoor air quality</subject><ispartof>Sustainability, 2024-12, Vol.16 (23), p.10436</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c222t-73013214e347fb23e6a33470206d06d30bd62af57616bc415d4e2a75a48effe43</cites><orcidid>0000-0003-0978-3657 ; 0009-0006-1008-2814 ; 0000-0002-2826-7810 ; 0000-0002-1847-6088 ; 0009-0001-1207-1389</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Kim, Yushin</creatorcontrib><creatorcontrib>Kim, Jungin</creatorcontrib><creatorcontrib>Cho, Sunghyun</creatorcontrib><creatorcontrib>Sim, Hyein</creatorcontrib><creatorcontrib>Kim, Ji-Young</creatorcontrib><title>Enhancing Environmental Policy Decisions in Korea and Japan Through AI-Driven Air Pollution Forecast</title><title>Sustainability</title><description>(1) Background: Although numerous artificial intelligence (AI)-based air pollution prediction models have been proposed, research that links key pollution drivers, such as regional industrial facilities, to actionable policy recommendations is required. (2) Methods: This study employs the radial basis function (RBF) and spatial lag features to capture spatial interactions among regions, utilizing a transformer model for analysis. The model was trained on air quality and industrial data from South Korea (2010–2022) and Japan (2017–2020). (3) Results: The transformer model achieved a mean squared error of 0.045 for the Korean dataset and 0.166 for the Japanese dataset, outperforming benchmark models, including Support Vector Regression, neural networks, and the AutoRegressive Integrated Moving Average model. (4) Conclusions: By capturing complex spatial dynamics, the proposed model provides valuable insights that can assist policymakers in developing effective, data-driven strategies for air pollution reduction at the national and regional levels, thereby supporting the broader goals of sustainability through informed, equitable environmental interventions.</description><subject>Air pollution</subject><subject>Air quality</subject><subject>Artificial intelligence</subject><subject>Computational linguistics</subject><subject>Datasets</subject><subject>Environmental policy</subject><subject>Factories</subject><subject>Language processing</subject><subject>Natural language interfaces</subject><subject>Neural networks</subject><subject>Outdoor air quality</subject><issn>2071-1050</issn><issn>2071-1050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpVkU1LAzEQhoMoWLQn_0DAk8jWfG22e1z6odWCovW8pNlkm7JNarJb7L83pR7amYF5GZ535jAA3GE0oDRHT6HDnFCMGOUXoEdQhhOMUnR5oq9BP4Q1ikEpzjHvgWpiV8JKY2s4sTvjnd0o24oGfrjGyD0cK2mCcTZAY-Gb80pAYSv4KrbCwsXKu65ewWKWjL3ZKQsL4w_OpmujB04jL0Vob8GVFk1Q_f9-A76nk8XoJZm_P89GxTyRhJA2ySjClGCmKMv0klDFBY0SEcSrWBQtK06ETjOO-VIynFZMEZGlgg2V1orRG3B_3Lv17qdToS3XrvM2niwpZgxn-ZDxSA2OVC0aVRqrXeuFjFmpjZHOKm3ivBgShHCe0jwaHs4MkWnVb1uLLoRy9vV5zj4eWeldCF7pcuvNRvh9iVF5eFN58ib6B5N9gjA</recordid><startdate>20241201</startdate><enddate>20241201</enddate><creator>Kim, Yushin</creator><creator>Kim, Jungin</creator><creator>Cho, Sunghyun</creator><creator>Sim, Hyein</creator><creator>Kim, Ji-Young</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>4U-</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0003-0978-3657</orcidid><orcidid>https://orcid.org/0009-0006-1008-2814</orcidid><orcidid>https://orcid.org/0000-0002-2826-7810</orcidid><orcidid>https://orcid.org/0000-0002-1847-6088</orcidid><orcidid>https://orcid.org/0009-0001-1207-1389</orcidid></search><sort><creationdate>20241201</creationdate><title>Enhancing Environmental Policy Decisions in Korea and Japan Through AI-Driven Air Pollution Forecast</title><author>Kim, Yushin ; Kim, Jungin ; Cho, Sunghyun ; Sim, Hyein ; Kim, Ji-Young</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c222t-73013214e347fb23e6a33470206d06d30bd62af57616bc415d4e2a75a48effe43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Air pollution</topic><topic>Air quality</topic><topic>Artificial intelligence</topic><topic>Computational linguistics</topic><topic>Datasets</topic><topic>Environmental policy</topic><topic>Factories</topic><topic>Language processing</topic><topic>Natural language interfaces</topic><topic>Neural networks</topic><topic>Outdoor air quality</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Yushin</creatorcontrib><creatorcontrib>Kim, Jungin</creatorcontrib><creatorcontrib>Cho, Sunghyun</creatorcontrib><creatorcontrib>Sim, Hyein</creatorcontrib><creatorcontrib>Kim, Ji-Young</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>University Readers</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Yushin</au><au>Kim, Jungin</au><au>Cho, Sunghyun</au><au>Sim, Hyein</au><au>Kim, Ji-Young</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhancing Environmental Policy Decisions in Korea and Japan Through AI-Driven Air Pollution Forecast</atitle><jtitle>Sustainability</jtitle><date>2024-12-01</date><risdate>2024</risdate><volume>16</volume><issue>23</issue><spage>10436</spage><pages>10436-</pages><issn>2071-1050</issn><eissn>2071-1050</eissn><abstract>(1) Background: Although numerous artificial intelligence (AI)-based air pollution prediction models have been proposed, research that links key pollution drivers, such as regional industrial facilities, to actionable policy recommendations is required. (2) Methods: This study employs the radial basis function (RBF) and spatial lag features to capture spatial interactions among regions, utilizing a transformer model for analysis. The model was trained on air quality and industrial data from South Korea (2010–2022) and Japan (2017–2020). (3) Results: The transformer model achieved a mean squared error of 0.045 for the Korean dataset and 0.166 for the Japanese dataset, outperforming benchmark models, including Support Vector Regression, neural networks, and the AutoRegressive Integrated Moving Average model. (4) Conclusions: By capturing complex spatial dynamics, the proposed model provides valuable insights that can assist policymakers in developing effective, data-driven strategies for air pollution reduction at the national and regional levels, thereby supporting the broader goals of sustainability through informed, equitable environmental interventions.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/su162310436</doi><orcidid>https://orcid.org/0000-0003-0978-3657</orcidid><orcidid>https://orcid.org/0009-0006-1008-2814</orcidid><orcidid>https://orcid.org/0000-0002-2826-7810</orcidid><orcidid>https://orcid.org/0000-0002-1847-6088</orcidid><orcidid>https://orcid.org/0009-0001-1207-1389</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2071-1050 |
ispartof | Sustainability, 2024-12, Vol.16 (23), p.10436 |
issn | 2071-1050 2071-1050 |
language | eng |
recordid | cdi_proquest_journals_3144179846 |
source | MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals |
subjects | Air pollution Air quality Artificial intelligence Computational linguistics Datasets Environmental policy Factories Language processing Natural language interfaces Neural networks Outdoor air quality |
title | Enhancing Environmental Policy Decisions in Korea and Japan Through AI-Driven Air Pollution Forecast |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T18%3A54%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhancing%20Environmental%20Policy%20Decisions%20in%20Korea%20and%20Japan%20Through%20AI-Driven%20Air%20Pollution%20Forecast&rft.jtitle=Sustainability&rft.au=Kim,%20Yushin&rft.date=2024-12-01&rft.volume=16&rft.issue=23&rft.spage=10436&rft.pages=10436-&rft.issn=2071-1050&rft.eissn=2071-1050&rft_id=info:doi/10.3390/su162310436&rft_dat=%3Cgale_proqu%3EA820019539%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3144179846&rft_id=info:pmid/&rft_galeid=A820019539&rfr_iscdi=true |