Constitutive Modelling Analysis and Hot Deformation Process of AISI 8822H Steel
This study used the Gleeble 3800 thermomechanical simulator to examine the hot deformation characteristics of AISI 8822H steel. The main goal was to understand the alloy's behaviour under various thermomechanical settings, emphasising temperature ranges between 1173 K and 1323 K and strain rate...
Gespeichert in:
Veröffentlicht in: | Materials 2024-11, Vol.17 (23), p.5713 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 23 |
container_start_page | 5713 |
container_title | Materials |
container_volume | 17 |
creator | Elanany, Khaled Borek, Wojciech Ebied, Saad |
description | This study used the Gleeble 3800 thermomechanical simulator to examine the hot deformation characteristics of AISI 8822H steel. The main goal was to understand the alloy's behaviour under various thermomechanical settings, emphasising temperature ranges between 1173 K and 1323 K and strain rates from 0.01 s
to 10 s
. This study aimed to enhance the alloy's manufacturing process by offering a thorough understanding of the material's response to these conditions. Four various constitutive models-Arrhenius-type, Johnson-Cook, modified Johnson-Cook, and Trimble-were used in a comprehensive technique to forecast flow stress values in order to meet the study's goals. The accuracy of each model in forecasting the behaviour of the material under the given circumstances was assessed. A thorough comparison investigation revealed that the Trimble model was the most accurate model allowing prediction of material behaviour, with the maximum correlation factor (R = 0.99) and at least average absolute relative error (1.7%). On the other hand, the Johnson-Cook model had the least correlation factor (R = 0.92) and the maximum average absolute relative error (32.2%), indicating that it was the least accurate because it could not account for all softening effects. |
doi_str_mv | 10.3390/ma17235713 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_3144175508</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A819953299</galeid><sourcerecordid>A819953299</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1257-20fa374e597683c70a6f002245f4480bbf18c6130bc0c05985b5cc6132af4e8b3</originalsourceid><addsrcrecordid>eNpNkMtqwzAQRUVpaUqaTT-gCLorONXTlpYmfSSQkkLatZFlKSjYVirZhfx9HZI-ZhYzXO4MlwPADUZTSiV6aBTOCOUZpmfgCkuZJlgydv5vH4FJjFs0FKVYEHkJRlSmgmOWXYHVzLexc13fuS8DX31l6tq1G5i3qt5HF6FqKzj3HXw01odGdc638C14bWKE3sJ8sV5AIQiZw3VnTH0NLqyqo5mc5hh8PD-9z-bJcvWymOXLRGPCs4Qgq2jGDJdZKqjOkEotQoQwbhkTqCwtFjrFFJUaacSl4CXXB4Eoy4wo6RjcHf_ugv_sTeyKre_DEDoWFDOGM86RGFzTo2ujalO41vouKD10ZRqnfWusG_RcDKw4JVIOB_fHAx18jMHYYhdco8K-wKg48C7-eA_m21OGvmxM9Wv9oUu_AV7zdvU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3144175508</pqid></control><display><type>article</type><title>Constitutive Modelling Analysis and Hot Deformation Process of AISI 8822H Steel</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>EZB Electronic Journals Library</source><source>PubMed Central Open Access</source><creator>Elanany, Khaled ; Borek, Wojciech ; Ebied, Saad</creator><creatorcontrib>Elanany, Khaled ; Borek, Wojciech ; Ebied, Saad</creatorcontrib><description>This study used the Gleeble 3800 thermomechanical simulator to examine the hot deformation characteristics of AISI 8822H steel. The main goal was to understand the alloy's behaviour under various thermomechanical settings, emphasising temperature ranges between 1173 K and 1323 K and strain rates from 0.01 s
to 10 s
. This study aimed to enhance the alloy's manufacturing process by offering a thorough understanding of the material's response to these conditions. Four various constitutive models-Arrhenius-type, Johnson-Cook, modified Johnson-Cook, and Trimble-were used in a comprehensive technique to forecast flow stress values in order to meet the study's goals. The accuracy of each model in forecasting the behaviour of the material under the given circumstances was assessed. A thorough comparison investigation revealed that the Trimble model was the most accurate model allowing prediction of material behaviour, with the maximum correlation factor (R = 0.99) and at least average absolute relative error (1.7%). On the other hand, the Johnson-Cook model had the least correlation factor (R = 0.92) and the maximum average absolute relative error (32.2%), indicating that it was the least accurate because it could not account for all softening effects.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma17235713</identifier><identifier>PMID: 39685147</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Alloys ; Analysis ; Carbon steel ; Constitutive models ; Correlation coefficients ; Corrosion resistance ; Deformation ; Deformation analysis ; Error analysis ; Experiments ; Localization ; Manufacturing ; Medical device industry ; Medical equipment ; Medical research ; Molybdenum steel ; Production processes ; Stainless steel ; Steel alloys ; Strain hardening ; Stress ; Temperature ; Thermal simulators ; Thermomechanical analysis ; Yield strength</subject><ispartof>Materials, 2024-11, Vol.17 (23), p.5713</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1257-20fa374e597683c70a6f002245f4480bbf18c6130bc0c05985b5cc6132af4e8b3</cites><orcidid>0000-0002-8292-4332 ; 0009-0008-3985-0500</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39685147$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Elanany, Khaled</creatorcontrib><creatorcontrib>Borek, Wojciech</creatorcontrib><creatorcontrib>Ebied, Saad</creatorcontrib><title>Constitutive Modelling Analysis and Hot Deformation Process of AISI 8822H Steel</title><title>Materials</title><addtitle>Materials (Basel)</addtitle><description>This study used the Gleeble 3800 thermomechanical simulator to examine the hot deformation characteristics of AISI 8822H steel. The main goal was to understand the alloy's behaviour under various thermomechanical settings, emphasising temperature ranges between 1173 K and 1323 K and strain rates from 0.01 s
to 10 s
. This study aimed to enhance the alloy's manufacturing process by offering a thorough understanding of the material's response to these conditions. Four various constitutive models-Arrhenius-type, Johnson-Cook, modified Johnson-Cook, and Trimble-were used in a comprehensive technique to forecast flow stress values in order to meet the study's goals. The accuracy of each model in forecasting the behaviour of the material under the given circumstances was assessed. A thorough comparison investigation revealed that the Trimble model was the most accurate model allowing prediction of material behaviour, with the maximum correlation factor (R = 0.99) and at least average absolute relative error (1.7%). On the other hand, the Johnson-Cook model had the least correlation factor (R = 0.92) and the maximum average absolute relative error (32.2%), indicating that it was the least accurate because it could not account for all softening effects.</description><subject>Alloys</subject><subject>Analysis</subject><subject>Carbon steel</subject><subject>Constitutive models</subject><subject>Correlation coefficients</subject><subject>Corrosion resistance</subject><subject>Deformation</subject><subject>Deformation analysis</subject><subject>Error analysis</subject><subject>Experiments</subject><subject>Localization</subject><subject>Manufacturing</subject><subject>Medical device industry</subject><subject>Medical equipment</subject><subject>Medical research</subject><subject>Molybdenum steel</subject><subject>Production processes</subject><subject>Stainless steel</subject><subject>Steel alloys</subject><subject>Strain hardening</subject><subject>Stress</subject><subject>Temperature</subject><subject>Thermal simulators</subject><subject>Thermomechanical analysis</subject><subject>Yield strength</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpNkMtqwzAQRUVpaUqaTT-gCLorONXTlpYmfSSQkkLatZFlKSjYVirZhfx9HZI-ZhYzXO4MlwPADUZTSiV6aBTOCOUZpmfgCkuZJlgydv5vH4FJjFs0FKVYEHkJRlSmgmOWXYHVzLexc13fuS8DX31l6tq1G5i3qt5HF6FqKzj3HXw01odGdc638C14bWKE3sJ8sV5AIQiZw3VnTH0NLqyqo5mc5hh8PD-9z-bJcvWymOXLRGPCs4Qgq2jGDJdZKqjOkEotQoQwbhkTqCwtFjrFFJUaacSl4CXXB4Eoy4wo6RjcHf_ugv_sTeyKre_DEDoWFDOGM86RGFzTo2ujalO41vouKD10ZRqnfWusG_RcDKw4JVIOB_fHAx18jMHYYhdco8K-wKg48C7-eA_m21OGvmxM9Wv9oUu_AV7zdvU</recordid><startdate>20241122</startdate><enddate>20241122</enddate><creator>Elanany, Khaled</creator><creator>Borek, Wojciech</creator><creator>Ebied, Saad</creator><general>MDPI AG</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-8292-4332</orcidid><orcidid>https://orcid.org/0009-0008-3985-0500</orcidid></search><sort><creationdate>20241122</creationdate><title>Constitutive Modelling Analysis and Hot Deformation Process of AISI 8822H Steel</title><author>Elanany, Khaled ; Borek, Wojciech ; Ebied, Saad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1257-20fa374e597683c70a6f002245f4480bbf18c6130bc0c05985b5cc6132af4e8b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Alloys</topic><topic>Analysis</topic><topic>Carbon steel</topic><topic>Constitutive models</topic><topic>Correlation coefficients</topic><topic>Corrosion resistance</topic><topic>Deformation</topic><topic>Deformation analysis</topic><topic>Error analysis</topic><topic>Experiments</topic><topic>Localization</topic><topic>Manufacturing</topic><topic>Medical device industry</topic><topic>Medical equipment</topic><topic>Medical research</topic><topic>Molybdenum steel</topic><topic>Production processes</topic><topic>Stainless steel</topic><topic>Steel alloys</topic><topic>Strain hardening</topic><topic>Stress</topic><topic>Temperature</topic><topic>Thermal simulators</topic><topic>Thermomechanical analysis</topic><topic>Yield strength</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Elanany, Khaled</creatorcontrib><creatorcontrib>Borek, Wojciech</creatorcontrib><creatorcontrib>Ebied, Saad</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials science collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Elanany, Khaled</au><au>Borek, Wojciech</au><au>Ebied, Saad</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Constitutive Modelling Analysis and Hot Deformation Process of AISI 8822H Steel</atitle><jtitle>Materials</jtitle><addtitle>Materials (Basel)</addtitle><date>2024-11-22</date><risdate>2024</risdate><volume>17</volume><issue>23</issue><spage>5713</spage><pages>5713-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>This study used the Gleeble 3800 thermomechanical simulator to examine the hot deformation characteristics of AISI 8822H steel. The main goal was to understand the alloy's behaviour under various thermomechanical settings, emphasising temperature ranges between 1173 K and 1323 K and strain rates from 0.01 s
to 10 s
. This study aimed to enhance the alloy's manufacturing process by offering a thorough understanding of the material's response to these conditions. Four various constitutive models-Arrhenius-type, Johnson-Cook, modified Johnson-Cook, and Trimble-were used in a comprehensive technique to forecast flow stress values in order to meet the study's goals. The accuracy of each model in forecasting the behaviour of the material under the given circumstances was assessed. A thorough comparison investigation revealed that the Trimble model was the most accurate model allowing prediction of material behaviour, with the maximum correlation factor (R = 0.99) and at least average absolute relative error (1.7%). On the other hand, the Johnson-Cook model had the least correlation factor (R = 0.92) and the maximum average absolute relative error (32.2%), indicating that it was the least accurate because it could not account for all softening effects.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>39685147</pmid><doi>10.3390/ma17235713</doi><orcidid>https://orcid.org/0000-0002-8292-4332</orcidid><orcidid>https://orcid.org/0009-0008-3985-0500</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1996-1944 |
ispartof | Materials, 2024-11, Vol.17 (23), p.5713 |
issn | 1996-1944 1996-1944 |
language | eng |
recordid | cdi_proquest_journals_3144175508 |
source | MDPI - Multidisciplinary Digital Publishing Institute; PubMed Central; Free Full-Text Journals in Chemistry; EZB Electronic Journals Library; PubMed Central Open Access |
subjects | Alloys Analysis Carbon steel Constitutive models Correlation coefficients Corrosion resistance Deformation Deformation analysis Error analysis Experiments Localization Manufacturing Medical device industry Medical equipment Medical research Molybdenum steel Production processes Stainless steel Steel alloys Strain hardening Stress Temperature Thermal simulators Thermomechanical analysis Yield strength |
title | Constitutive Modelling Analysis and Hot Deformation Process of AISI 8822H Steel |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T18%3A29%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Constitutive%20Modelling%20Analysis%20and%20Hot%20Deformation%20Process%20of%20AISI%208822H%20Steel&rft.jtitle=Materials&rft.au=Elanany,%20Khaled&rft.date=2024-11-22&rft.volume=17&rft.issue=23&rft.spage=5713&rft.pages=5713-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma17235713&rft_dat=%3Cgale_proqu%3EA819953299%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3144175508&rft_id=info:pmid/39685147&rft_galeid=A819953299&rfr_iscdi=true |