TlcMHCpan: A Novel Deep Learning Model for Enhanced Pan-Specific Prediction of Peptide-HLA Binding
The interaction between Human Leukocyte Antigens (HLA) and peptides is key in cellular immunology and crucial for the development of the immune system and peptide-based drug design. Currently, in the field of machine learning for predicting peptide-HLA (pHLA) binding, the mainstream methods involve...
Gespeichert in:
Veröffentlicht in: | IEEE access 2024-01, Vol.12, p.1-1 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE access |
container_volume | 12 |
creator | Peng, Xin Yang, Donghong Zhou, Yiming Peng, Shenglan |
description | The interaction between Human Leukocyte Antigens (HLA) and peptides is key in cellular immunology and crucial for the development of the immune system and peptide-based drug design. Currently, in the field of machine learning for predicting peptide-HLA (pHLA) binding, the mainstream methods involve neural network-based models that enhance prediction accuracy and efficiency by simulating the interactions between HLA and peptides. Among the peptides binding to class I HLA, most sequences are 9 amino acids in length, therefore, these models mainly consider the binding prediction of peptides with a fixed length of 9. Additionally, most neural network models rely on pseudo-sequence encoding techniques, which are designed based on 34 key positions in the peptide-HLA binding structure. Although this method provides important contextual clues for the model, it may not fully capture the complex interactions between HLA and peptides, thereby affecting prediction accuracy. To address this issue, we introduce a novel pan-specific prediction model, TlcMHCpan, which is capable of handling peptide sequences of varying lengths. It leverages deep learning techniques including Transformer, LSTM, and CNN, and incorporates a self-attention mechanism to enhance feature extraction capabilities. We have conducted a comprehensive evaluation of TlcMHCpan on the latest benchmark dataset provided by the Immune Epitope Database (IEDB). The experimental results show that, out of 38 benchmark datasets, TlcMHCpan achieved the highest AUC score in 11 datasets, with 6 of them being the exclusive top performer. |
doi_str_mv | 10.1109/ACCESS.2024.3512853 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3144175280</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10781337</ieee_id><doaj_id>oai_doaj_org_article_d9d5064b29064244b364a43b2605ab87</doaj_id><sourcerecordid>3144175280</sourcerecordid><originalsourceid>FETCH-LOGICAL-c289t-757771d187ff8a92493cd30dcb3784d1aced1893b35e4cca7d798e427169331f3</originalsourceid><addsrcrecordid>eNpNUcFq3DAQNaGFhDRfkB4EPXsraWRL6m3rbrqBTbOw6VnI0jjVspVc2Sn076vUoWQOM8Nj3psZXlVdM7pijOqP667bHA4rTrlYQcO4auCsuuCs1TU00L551Z9XV9N0pCVUgRp5UfUPJ3e37UYbP5E1-ZZ-44l8QRzJDm2OIT6Su-QLNqRMNvGHjQ492dtYH0Z0YQiO7DP64OaQIkkD2eM4B4_1drcmn0P0ReFd9XawpwmvXupl9f1m89Bt693919tuvasdV3quZSOlZJ4pOQzKai40OA_Uux6kEp7ZspkpDT00KJyz0kutUHBZPgFgA1xWt4uuT_Zoxhx-2vzHJBvMPyDlR2PzHNwJjde-oa3ouS6ZC9FDK6yAnre0sb2SRevDojXm9OsJp9kc01OO5XwDTAgmG65omYJlyuU0TRmH_1sZNc_emMUb8-yNefGmsN4vrICIrxhSMQAJfwEPb4dC</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3144175280</pqid></control><display><type>article</type><title>TlcMHCpan: A Novel Deep Learning Model for Enhanced Pan-Specific Prediction of Peptide-HLA Binding</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Peng, Xin ; Yang, Donghong ; Zhou, Yiming ; Peng, Shenglan</creator><creatorcontrib>Peng, Xin ; Yang, Donghong ; Zhou, Yiming ; Peng, Shenglan</creatorcontrib><description>The interaction between Human Leukocyte Antigens (HLA) and peptides is key in cellular immunology and crucial for the development of the immune system and peptide-based drug design. Currently, in the field of machine learning for predicting peptide-HLA (pHLA) binding, the mainstream methods involve neural network-based models that enhance prediction accuracy and efficiency by simulating the interactions between HLA and peptides. Among the peptides binding to class I HLA, most sequences are 9 amino acids in length, therefore, these models mainly consider the binding prediction of peptides with a fixed length of 9. Additionally, most neural network models rely on pseudo-sequence encoding techniques, which are designed based on 34 key positions in the peptide-HLA binding structure. Although this method provides important contextual clues for the model, it may not fully capture the complex interactions between HLA and peptides, thereby affecting prediction accuracy. To address this issue, we introduce a novel pan-specific prediction model, TlcMHCpan, which is capable of handling peptide sequences of varying lengths. It leverages deep learning techniques including Transformer, LSTM, and CNN, and incorporates a self-attention mechanism to enhance feature extraction capabilities. We have conducted a comprehensive evaluation of TlcMHCpan on the latest benchmark dataset provided by the Immune Epitope Database (IEDB). The experimental results show that, out of 38 benchmark datasets, TlcMHCpan achieved the highest AUC score in 11 datasets, with 6 of them being the exclusive top performer.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2024.3512853</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Accuracy ; Amino acids ; Antigens ; Benchmarks ; Binding ; Data models ; Datasets ; Deep learning ; Encoding ; Feature extraction ; Immune system ; Immunology ; LSTM ; Machine learning ; Neural networks ; Peptide-HLA binding ; Peptides ; Prediction models ; Predictions ; Predictive models ; Self-attention ; Sequences ; Transformer ; Transformers</subject><ispartof>IEEE access, 2024-01, Vol.12, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c289t-757771d187ff8a92493cd30dcb3784d1aced1893b35e4cca7d798e427169331f3</cites><orcidid>0000-0001-8872-5417 ; 0009-0002-4518-8994 ; 0009-0005-3051-0401 ; 0000-0001-7103-1814</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10781337$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,27610,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Peng, Xin</creatorcontrib><creatorcontrib>Yang, Donghong</creatorcontrib><creatorcontrib>Zhou, Yiming</creatorcontrib><creatorcontrib>Peng, Shenglan</creatorcontrib><title>TlcMHCpan: A Novel Deep Learning Model for Enhanced Pan-Specific Prediction of Peptide-HLA Binding</title><title>IEEE access</title><addtitle>Access</addtitle><description>The interaction between Human Leukocyte Antigens (HLA) and peptides is key in cellular immunology and crucial for the development of the immune system and peptide-based drug design. Currently, in the field of machine learning for predicting peptide-HLA (pHLA) binding, the mainstream methods involve neural network-based models that enhance prediction accuracy and efficiency by simulating the interactions between HLA and peptides. Among the peptides binding to class I HLA, most sequences are 9 amino acids in length, therefore, these models mainly consider the binding prediction of peptides with a fixed length of 9. Additionally, most neural network models rely on pseudo-sequence encoding techniques, which are designed based on 34 key positions in the peptide-HLA binding structure. Although this method provides important contextual clues for the model, it may not fully capture the complex interactions between HLA and peptides, thereby affecting prediction accuracy. To address this issue, we introduce a novel pan-specific prediction model, TlcMHCpan, which is capable of handling peptide sequences of varying lengths. It leverages deep learning techniques including Transformer, LSTM, and CNN, and incorporates a self-attention mechanism to enhance feature extraction capabilities. We have conducted a comprehensive evaluation of TlcMHCpan on the latest benchmark dataset provided by the Immune Epitope Database (IEDB). The experimental results show that, out of 38 benchmark datasets, TlcMHCpan achieved the highest AUC score in 11 datasets, with 6 of them being the exclusive top performer.</description><subject>Accuracy</subject><subject>Amino acids</subject><subject>Antigens</subject><subject>Benchmarks</subject><subject>Binding</subject><subject>Data models</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Encoding</subject><subject>Feature extraction</subject><subject>Immune system</subject><subject>Immunology</subject><subject>LSTM</subject><subject>Machine learning</subject><subject>Neural networks</subject><subject>Peptide-HLA binding</subject><subject>Peptides</subject><subject>Prediction models</subject><subject>Predictions</subject><subject>Predictive models</subject><subject>Self-attention</subject><subject>Sequences</subject><subject>Transformer</subject><subject>Transformers</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUcFq3DAQNaGFhDRfkB4EPXsraWRL6m3rbrqBTbOw6VnI0jjVspVc2Sn076vUoWQOM8Nj3psZXlVdM7pijOqP667bHA4rTrlYQcO4auCsuuCs1TU00L551Z9XV9N0pCVUgRp5UfUPJ3e37UYbP5E1-ZZ-44l8QRzJDm2OIT6Su-QLNqRMNvGHjQ492dtYH0Z0YQiO7DP64OaQIkkD2eM4B4_1drcmn0P0ReFd9XawpwmvXupl9f1m89Bt693919tuvasdV3quZSOlZJ4pOQzKai40OA_Uux6kEp7ZspkpDT00KJyz0kutUHBZPgFgA1xWt4uuT_Zoxhx-2vzHJBvMPyDlR2PzHNwJjde-oa3ouS6ZC9FDK6yAnre0sb2SRevDojXm9OsJp9kc01OO5XwDTAgmG65omYJlyuU0TRmH_1sZNc_emMUb8-yNefGmsN4vrICIrxhSMQAJfwEPb4dC</recordid><startdate>20240101</startdate><enddate>20240101</enddate><creator>Peng, Xin</creator><creator>Yang, Donghong</creator><creator>Zhou, Yiming</creator><creator>Peng, Shenglan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-8872-5417</orcidid><orcidid>https://orcid.org/0009-0002-4518-8994</orcidid><orcidid>https://orcid.org/0009-0005-3051-0401</orcidid><orcidid>https://orcid.org/0000-0001-7103-1814</orcidid></search><sort><creationdate>20240101</creationdate><title>TlcMHCpan: A Novel Deep Learning Model for Enhanced Pan-Specific Prediction of Peptide-HLA Binding</title><author>Peng, Xin ; Yang, Donghong ; Zhou, Yiming ; Peng, Shenglan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c289t-757771d187ff8a92493cd30dcb3784d1aced1893b35e4cca7d798e427169331f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Amino acids</topic><topic>Antigens</topic><topic>Benchmarks</topic><topic>Binding</topic><topic>Data models</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Encoding</topic><topic>Feature extraction</topic><topic>Immune system</topic><topic>Immunology</topic><topic>LSTM</topic><topic>Machine learning</topic><topic>Neural networks</topic><topic>Peptide-HLA binding</topic><topic>Peptides</topic><topic>Prediction models</topic><topic>Predictions</topic><topic>Predictive models</topic><topic>Self-attention</topic><topic>Sequences</topic><topic>Transformer</topic><topic>Transformers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Peng, Xin</creatorcontrib><creatorcontrib>Yang, Donghong</creatorcontrib><creatorcontrib>Zhou, Yiming</creatorcontrib><creatorcontrib>Peng, Shenglan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Peng, Xin</au><au>Yang, Donghong</au><au>Zhou, Yiming</au><au>Peng, Shenglan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>TlcMHCpan: A Novel Deep Learning Model for Enhanced Pan-Specific Prediction of Peptide-HLA Binding</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2024-01-01</date><risdate>2024</risdate><volume>12</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>The interaction between Human Leukocyte Antigens (HLA) and peptides is key in cellular immunology and crucial for the development of the immune system and peptide-based drug design. Currently, in the field of machine learning for predicting peptide-HLA (pHLA) binding, the mainstream methods involve neural network-based models that enhance prediction accuracy and efficiency by simulating the interactions between HLA and peptides. Among the peptides binding to class I HLA, most sequences are 9 amino acids in length, therefore, these models mainly consider the binding prediction of peptides with a fixed length of 9. Additionally, most neural network models rely on pseudo-sequence encoding techniques, which are designed based on 34 key positions in the peptide-HLA binding structure. Although this method provides important contextual clues for the model, it may not fully capture the complex interactions between HLA and peptides, thereby affecting prediction accuracy. To address this issue, we introduce a novel pan-specific prediction model, TlcMHCpan, which is capable of handling peptide sequences of varying lengths. It leverages deep learning techniques including Transformer, LSTM, and CNN, and incorporates a self-attention mechanism to enhance feature extraction capabilities. We have conducted a comprehensive evaluation of TlcMHCpan on the latest benchmark dataset provided by the Immune Epitope Database (IEDB). The experimental results show that, out of 38 benchmark datasets, TlcMHCpan achieved the highest AUC score in 11 datasets, with 6 of them being the exclusive top performer.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2024.3512853</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-8872-5417</orcidid><orcidid>https://orcid.org/0009-0002-4518-8994</orcidid><orcidid>https://orcid.org/0009-0005-3051-0401</orcidid><orcidid>https://orcid.org/0000-0001-7103-1814</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2024-01, Vol.12, p.1-1 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_proquest_journals_3144175280 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Accuracy Amino acids Antigens Benchmarks Binding Data models Datasets Deep learning Encoding Feature extraction Immune system Immunology LSTM Machine learning Neural networks Peptide-HLA binding Peptides Prediction models Predictions Predictive models Self-attention Sequences Transformer Transformers |
title | TlcMHCpan: A Novel Deep Learning Model for Enhanced Pan-Specific Prediction of Peptide-HLA Binding |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T12%3A55%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=TlcMHCpan:%20A%20Novel%20Deep%20Learning%20Model%20for%20Enhanced%20Pan-Specific%20Prediction%20of%20Peptide-HLA%20Binding&rft.jtitle=IEEE%20access&rft.au=Peng,%20Xin&rft.date=2024-01-01&rft.volume=12&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2024.3512853&rft_dat=%3Cproquest_cross%3E3144175280%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3144175280&rft_id=info:pmid/&rft_ieee_id=10781337&rft_doaj_id=oai_doaj_org_article_d9d5064b29064244b364a43b2605ab87&rfr_iscdi=true |