TlcMHCpan: A Novel Deep Learning Model for Enhanced Pan-Specific Prediction of Peptide-HLA Binding

The interaction between Human Leukocyte Antigens (HLA) and peptides is key in cellular immunology and crucial for the development of the immune system and peptide-based drug design. Currently, in the field of machine learning for predicting peptide-HLA (pHLA) binding, the mainstream methods involve...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2024-01, Vol.12, p.1-1
Hauptverfasser: Peng, Xin, Yang, Donghong, Zhou, Yiming, Peng, Shenglan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1
container_issue
container_start_page 1
container_title IEEE access
container_volume 12
creator Peng, Xin
Yang, Donghong
Zhou, Yiming
Peng, Shenglan
description The interaction between Human Leukocyte Antigens (HLA) and peptides is key in cellular immunology and crucial for the development of the immune system and peptide-based drug design. Currently, in the field of machine learning for predicting peptide-HLA (pHLA) binding, the mainstream methods involve neural network-based models that enhance prediction accuracy and efficiency by simulating the interactions between HLA and peptides. Among the peptides binding to class I HLA, most sequences are 9 amino acids in length, therefore, these models mainly consider the binding prediction of peptides with a fixed length of 9. Additionally, most neural network models rely on pseudo-sequence encoding techniques, which are designed based on 34 key positions in the peptide-HLA binding structure. Although this method provides important contextual clues for the model, it may not fully capture the complex interactions between HLA and peptides, thereby affecting prediction accuracy. To address this issue, we introduce a novel pan-specific prediction model, TlcMHCpan, which is capable of handling peptide sequences of varying lengths. It leverages deep learning techniques including Transformer, LSTM, and CNN, and incorporates a self-attention mechanism to enhance feature extraction capabilities. We have conducted a comprehensive evaluation of TlcMHCpan on the latest benchmark dataset provided by the Immune Epitope Database (IEDB). The experimental results show that, out of 38 benchmark datasets, TlcMHCpan achieved the highest AUC score in 11 datasets, with 6 of them being the exclusive top performer.
doi_str_mv 10.1109/ACCESS.2024.3512853
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3144175280</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10781337</ieee_id><doaj_id>oai_doaj_org_article_d9d5064b29064244b364a43b2605ab87</doaj_id><sourcerecordid>3144175280</sourcerecordid><originalsourceid>FETCH-LOGICAL-c289t-757771d187ff8a92493cd30dcb3784d1aced1893b35e4cca7d798e427169331f3</originalsourceid><addsrcrecordid>eNpNUcFq3DAQNaGFhDRfkB4EPXsraWRL6m3rbrqBTbOw6VnI0jjVspVc2Sn076vUoWQOM8Nj3psZXlVdM7pijOqP667bHA4rTrlYQcO4auCsuuCs1TU00L551Z9XV9N0pCVUgRp5UfUPJ3e37UYbP5E1-ZZ-44l8QRzJDm2OIT6Su-QLNqRMNvGHjQ492dtYH0Z0YQiO7DP64OaQIkkD2eM4B4_1drcmn0P0ReFd9XawpwmvXupl9f1m89Bt693919tuvasdV3quZSOlZJ4pOQzKai40OA_Uux6kEp7ZspkpDT00KJyz0kutUHBZPgFgA1xWt4uuT_Zoxhx-2vzHJBvMPyDlR2PzHNwJjde-oa3ouS6ZC9FDK6yAnre0sb2SRevDojXm9OsJp9kc01OO5XwDTAgmG65omYJlyuU0TRmH_1sZNc_emMUb8-yNefGmsN4vrICIrxhSMQAJfwEPb4dC</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3144175280</pqid></control><display><type>article</type><title>TlcMHCpan: A Novel Deep Learning Model for Enhanced Pan-Specific Prediction of Peptide-HLA Binding</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Peng, Xin ; Yang, Donghong ; Zhou, Yiming ; Peng, Shenglan</creator><creatorcontrib>Peng, Xin ; Yang, Donghong ; Zhou, Yiming ; Peng, Shenglan</creatorcontrib><description>The interaction between Human Leukocyte Antigens (HLA) and peptides is key in cellular immunology and crucial for the development of the immune system and peptide-based drug design. Currently, in the field of machine learning for predicting peptide-HLA (pHLA) binding, the mainstream methods involve neural network-based models that enhance prediction accuracy and efficiency by simulating the interactions between HLA and peptides. Among the peptides binding to class I HLA, most sequences are 9 amino acids in length, therefore, these models mainly consider the binding prediction of peptides with a fixed length of 9. Additionally, most neural network models rely on pseudo-sequence encoding techniques, which are designed based on 34 key positions in the peptide-HLA binding structure. Although this method provides important contextual clues for the model, it may not fully capture the complex interactions between HLA and peptides, thereby affecting prediction accuracy. To address this issue, we introduce a novel pan-specific prediction model, TlcMHCpan, which is capable of handling peptide sequences of varying lengths. It leverages deep learning techniques including Transformer, LSTM, and CNN, and incorporates a self-attention mechanism to enhance feature extraction capabilities. We have conducted a comprehensive evaluation of TlcMHCpan on the latest benchmark dataset provided by the Immune Epitope Database (IEDB). The experimental results show that, out of 38 benchmark datasets, TlcMHCpan achieved the highest AUC score in 11 datasets, with 6 of them being the exclusive top performer.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2024.3512853</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Accuracy ; Amino acids ; Antigens ; Benchmarks ; Binding ; Data models ; Datasets ; Deep learning ; Encoding ; Feature extraction ; Immune system ; Immunology ; LSTM ; Machine learning ; Neural networks ; Peptide-HLA binding ; Peptides ; Prediction models ; Predictions ; Predictive models ; Self-attention ; Sequences ; Transformer ; Transformers</subject><ispartof>IEEE access, 2024-01, Vol.12, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c289t-757771d187ff8a92493cd30dcb3784d1aced1893b35e4cca7d798e427169331f3</cites><orcidid>0000-0001-8872-5417 ; 0009-0002-4518-8994 ; 0009-0005-3051-0401 ; 0000-0001-7103-1814</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10781337$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,27610,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Peng, Xin</creatorcontrib><creatorcontrib>Yang, Donghong</creatorcontrib><creatorcontrib>Zhou, Yiming</creatorcontrib><creatorcontrib>Peng, Shenglan</creatorcontrib><title>TlcMHCpan: A Novel Deep Learning Model for Enhanced Pan-Specific Prediction of Peptide-HLA Binding</title><title>IEEE access</title><addtitle>Access</addtitle><description>The interaction between Human Leukocyte Antigens (HLA) and peptides is key in cellular immunology and crucial for the development of the immune system and peptide-based drug design. Currently, in the field of machine learning for predicting peptide-HLA (pHLA) binding, the mainstream methods involve neural network-based models that enhance prediction accuracy and efficiency by simulating the interactions between HLA and peptides. Among the peptides binding to class I HLA, most sequences are 9 amino acids in length, therefore, these models mainly consider the binding prediction of peptides with a fixed length of 9. Additionally, most neural network models rely on pseudo-sequence encoding techniques, which are designed based on 34 key positions in the peptide-HLA binding structure. Although this method provides important contextual clues for the model, it may not fully capture the complex interactions between HLA and peptides, thereby affecting prediction accuracy. To address this issue, we introduce a novel pan-specific prediction model, TlcMHCpan, which is capable of handling peptide sequences of varying lengths. It leverages deep learning techniques including Transformer, LSTM, and CNN, and incorporates a self-attention mechanism to enhance feature extraction capabilities. We have conducted a comprehensive evaluation of TlcMHCpan on the latest benchmark dataset provided by the Immune Epitope Database (IEDB). The experimental results show that, out of 38 benchmark datasets, TlcMHCpan achieved the highest AUC score in 11 datasets, with 6 of them being the exclusive top performer.</description><subject>Accuracy</subject><subject>Amino acids</subject><subject>Antigens</subject><subject>Benchmarks</subject><subject>Binding</subject><subject>Data models</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Encoding</subject><subject>Feature extraction</subject><subject>Immune system</subject><subject>Immunology</subject><subject>LSTM</subject><subject>Machine learning</subject><subject>Neural networks</subject><subject>Peptide-HLA binding</subject><subject>Peptides</subject><subject>Prediction models</subject><subject>Predictions</subject><subject>Predictive models</subject><subject>Self-attention</subject><subject>Sequences</subject><subject>Transformer</subject><subject>Transformers</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUcFq3DAQNaGFhDRfkB4EPXsraWRL6m3rbrqBTbOw6VnI0jjVspVc2Sn076vUoWQOM8Nj3psZXlVdM7pijOqP667bHA4rTrlYQcO4auCsuuCs1TU00L551Z9XV9N0pCVUgRp5UfUPJ3e37UYbP5E1-ZZ-44l8QRzJDm2OIT6Su-QLNqRMNvGHjQ492dtYH0Z0YQiO7DP64OaQIkkD2eM4B4_1drcmn0P0ReFd9XawpwmvXupl9f1m89Bt693919tuvasdV3quZSOlZJ4pOQzKai40OA_Uux6kEp7ZspkpDT00KJyz0kutUHBZPgFgA1xWt4uuT_Zoxhx-2vzHJBvMPyDlR2PzHNwJjde-oa3ouS6ZC9FDK6yAnre0sb2SRevDojXm9OsJp9kc01OO5XwDTAgmG65omYJlyuU0TRmH_1sZNc_emMUb8-yNefGmsN4vrICIrxhSMQAJfwEPb4dC</recordid><startdate>20240101</startdate><enddate>20240101</enddate><creator>Peng, Xin</creator><creator>Yang, Donghong</creator><creator>Zhou, Yiming</creator><creator>Peng, Shenglan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-8872-5417</orcidid><orcidid>https://orcid.org/0009-0002-4518-8994</orcidid><orcidid>https://orcid.org/0009-0005-3051-0401</orcidid><orcidid>https://orcid.org/0000-0001-7103-1814</orcidid></search><sort><creationdate>20240101</creationdate><title>TlcMHCpan: A Novel Deep Learning Model for Enhanced Pan-Specific Prediction of Peptide-HLA Binding</title><author>Peng, Xin ; Yang, Donghong ; Zhou, Yiming ; Peng, Shenglan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c289t-757771d187ff8a92493cd30dcb3784d1aced1893b35e4cca7d798e427169331f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Amino acids</topic><topic>Antigens</topic><topic>Benchmarks</topic><topic>Binding</topic><topic>Data models</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Encoding</topic><topic>Feature extraction</topic><topic>Immune system</topic><topic>Immunology</topic><topic>LSTM</topic><topic>Machine learning</topic><topic>Neural networks</topic><topic>Peptide-HLA binding</topic><topic>Peptides</topic><topic>Prediction models</topic><topic>Predictions</topic><topic>Predictive models</topic><topic>Self-attention</topic><topic>Sequences</topic><topic>Transformer</topic><topic>Transformers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Peng, Xin</creatorcontrib><creatorcontrib>Yang, Donghong</creatorcontrib><creatorcontrib>Zhou, Yiming</creatorcontrib><creatorcontrib>Peng, Shenglan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Peng, Xin</au><au>Yang, Donghong</au><au>Zhou, Yiming</au><au>Peng, Shenglan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>TlcMHCpan: A Novel Deep Learning Model for Enhanced Pan-Specific Prediction of Peptide-HLA Binding</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2024-01-01</date><risdate>2024</risdate><volume>12</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>The interaction between Human Leukocyte Antigens (HLA) and peptides is key in cellular immunology and crucial for the development of the immune system and peptide-based drug design. Currently, in the field of machine learning for predicting peptide-HLA (pHLA) binding, the mainstream methods involve neural network-based models that enhance prediction accuracy and efficiency by simulating the interactions between HLA and peptides. Among the peptides binding to class I HLA, most sequences are 9 amino acids in length, therefore, these models mainly consider the binding prediction of peptides with a fixed length of 9. Additionally, most neural network models rely on pseudo-sequence encoding techniques, which are designed based on 34 key positions in the peptide-HLA binding structure. Although this method provides important contextual clues for the model, it may not fully capture the complex interactions between HLA and peptides, thereby affecting prediction accuracy. To address this issue, we introduce a novel pan-specific prediction model, TlcMHCpan, which is capable of handling peptide sequences of varying lengths. It leverages deep learning techniques including Transformer, LSTM, and CNN, and incorporates a self-attention mechanism to enhance feature extraction capabilities. We have conducted a comprehensive evaluation of TlcMHCpan on the latest benchmark dataset provided by the Immune Epitope Database (IEDB). The experimental results show that, out of 38 benchmark datasets, TlcMHCpan achieved the highest AUC score in 11 datasets, with 6 of them being the exclusive top performer.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2024.3512853</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-8872-5417</orcidid><orcidid>https://orcid.org/0009-0002-4518-8994</orcidid><orcidid>https://orcid.org/0009-0005-3051-0401</orcidid><orcidid>https://orcid.org/0000-0001-7103-1814</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2024-01, Vol.12, p.1-1
issn 2169-3536
2169-3536
language eng
recordid cdi_proquest_journals_3144175280
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Accuracy
Amino acids
Antigens
Benchmarks
Binding
Data models
Datasets
Deep learning
Encoding
Feature extraction
Immune system
Immunology
LSTM
Machine learning
Neural networks
Peptide-HLA binding
Peptides
Prediction models
Predictions
Predictive models
Self-attention
Sequences
Transformer
Transformers
title TlcMHCpan: A Novel Deep Learning Model for Enhanced Pan-Specific Prediction of Peptide-HLA Binding
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T12%3A55%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=TlcMHCpan:%20A%20Novel%20Deep%20Learning%20Model%20for%20Enhanced%20Pan-Specific%20Prediction%20of%20Peptide-HLA%20Binding&rft.jtitle=IEEE%20access&rft.au=Peng,%20Xin&rft.date=2024-01-01&rft.volume=12&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2024.3512853&rft_dat=%3Cproquest_cross%3E3144175280%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3144175280&rft_id=info:pmid/&rft_ieee_id=10781337&rft_doaj_id=oai_doaj_org_article_d9d5064b29064244b364a43b2605ab87&rfr_iscdi=true