Supporting the Characterization of Preeclampsia Patients Through Descriptive and Clustering Analysis

One of the most common causes of maternal death during pregnancy is preeclampsia. A deeper understanding of the patient’s features can aid in the hospital’s clinical care distribution. However, at the IESS Los Ceibos Hospital, these types of studies have not been carried out for preeclampsia. Theref...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electronics (Basel) 2024-12, Vol.13 (23), p.4854
Hauptverfasser: Parrales-Bravo, Franklin, Caicedo-Quiroz, Rosangela, Vasquez-Cevallos, Leonel, Tolozano-Benites, Elena, Charco-Aguirre, Jorge, Barzola-Monteses, Julio, Cevallos-Torres, Lorenzo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 23
container_start_page 4854
container_title Electronics (Basel)
container_volume 13
creator Parrales-Bravo, Franklin
Caicedo-Quiroz, Rosangela
Vasquez-Cevallos, Leonel
Tolozano-Benites, Elena
Charco-Aguirre, Jorge
Barzola-Monteses, Julio
Cevallos-Torres, Lorenzo
description One of the most common causes of maternal death during pregnancy is preeclampsia. A deeper understanding of the patient’s features can aid in the hospital’s clinical care distribution. However, at the IESS Los Ceibos Hospital, these types of studies have not been carried out for preeclampsia. Therefore, in this work, we describe the application of descriptive and clustering analysis to characterize preeclamptic patients. Preeclamptic patients treated at the IESS Los Ceibos Hospital in Guayaquil comprised the dataset used in this study. Descriptive and clustering analysis allowed us to find that severe preeclampsia (O141) is the most common diagnosis when preeclamptic patients arrive at the hospitalization unit, representing 79.5% of the cases. Moreover, women whose maternal age falls between 26 and 35 years have the highest prevalence of preeclampsia, representing 55.4% of the cases. Finally, adult patients in their late 30s or older are often diagnosed with severe preeclampsia (O141) and often require many hours of hospital care during the first two visits. These findings will help to generate care and prevention policies, such as the use of a low dose of aspirin, in these age groups to avoid the complications that preeclampsia can cause.
doi_str_mv 10.3390/electronics13234854
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_3144086148</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A819848377</galeid><sourcerecordid>A819848377</sourcerecordid><originalsourceid>FETCH-LOGICAL-c269t-e2fc7e52931680941ef7f5e3a8a038972d6db1092a136e2715df297650877ce33</originalsourceid><addsrcrecordid>eNptUU1LAzEQXUTBUvsLvAQ8t-Zjd5McS_2EggXreYnZSTdlu1mTrFB_vSkVVOjMYYbHe48ZXpZdEzxjTOJbaEFH7zqrA2GU5aLIz7IRxVxOJZX0_M9-mU1C2OJUkjDB8CirX4e-dz7aboNiA2jRKK90BG-_VLSuQ86glQfQrdr1wSq0SjB0MaB1492wadAdBO1tH-0nINXVaNEO4aBPhvNOtftgw1V2YVQbYPIzx9nbw_168TRdvjw-L-bLqaaljFOgRnMoqGSkFFjmBAw3BTAlFGZCclqX9TvBkirCSqCcFLWhkpcFFpxrYGyc3Rx9e-8-Bgix2rrBpyNCxUieY1GSXPyyNqqFynbGxfTyzgZdzQWRIlE4T6zZCVbqGnZWuw6MTfg_ATsKtHcheDBV7-1O-X1FcHUIqjoRFPsGIAaI3Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3144086148</pqid></control><display><type>article</type><title>Supporting the Characterization of Preeclampsia Patients Through Descriptive and Clustering Analysis</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Parrales-Bravo, Franklin ; Caicedo-Quiroz, Rosangela ; Vasquez-Cevallos, Leonel ; Tolozano-Benites, Elena ; Charco-Aguirre, Jorge ; Barzola-Monteses, Julio ; Cevallos-Torres, Lorenzo</creator><creatorcontrib>Parrales-Bravo, Franklin ; Caicedo-Quiroz, Rosangela ; Vasquez-Cevallos, Leonel ; Tolozano-Benites, Elena ; Charco-Aguirre, Jorge ; Barzola-Monteses, Julio ; Cevallos-Torres, Lorenzo</creatorcontrib><description>One of the most common causes of maternal death during pregnancy is preeclampsia. A deeper understanding of the patient’s features can aid in the hospital’s clinical care distribution. However, at the IESS Los Ceibos Hospital, these types of studies have not been carried out for preeclampsia. Therefore, in this work, we describe the application of descriptive and clustering analysis to characterize preeclamptic patients. Preeclamptic patients treated at the IESS Los Ceibos Hospital in Guayaquil comprised the dataset used in this study. Descriptive and clustering analysis allowed us to find that severe preeclampsia (O141) is the most common diagnosis when preeclamptic patients arrive at the hospitalization unit, representing 79.5% of the cases. Moreover, women whose maternal age falls between 26 and 35 years have the highest prevalence of preeclampsia, representing 55.4% of the cases. Finally, adult patients in their late 30s or older are often diagnosed with severe preeclampsia (O141) and often require many hours of hospital care during the first two visits. These findings will help to generate care and prevention policies, such as the use of a low dose of aspirin, in these age groups to avoid the complications that preeclampsia can cause.</description><identifier>ISSN: 2079-9292</identifier><identifier>EISSN: 2079-9292</identifier><identifier>DOI: 10.3390/electronics13234854</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Age ; Altitude ; Aspirin ; Care and treatment ; Cluster analysis ; Clustering ; Eclampsia ; Ethnicity ; Hospitals ; Hypertension ; Maternal mortality ; Minority &amp; ethnic groups ; Morbidity ; Mothers ; Patient outcomes ; Population ; Postpartum period ; Preeclampsia ; Pregnancy complications ; Prenatal care ; Womens health</subject><ispartof>Electronics (Basel), 2024-12, Vol.13 (23), p.4854</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c269t-e2fc7e52931680941ef7f5e3a8a038972d6db1092a136e2715df297650877ce33</cites><orcidid>0000-0002-7211-2891 ; 0000-0002-0099-0345 ; 0000-0002-9332-0825 ; 0000-0003-0737-9132 ; 0000-0002-6283-8197 ; 0000-0002-0186-3807 ; 0000-0003-2732-979X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Parrales-Bravo, Franklin</creatorcontrib><creatorcontrib>Caicedo-Quiroz, Rosangela</creatorcontrib><creatorcontrib>Vasquez-Cevallos, Leonel</creatorcontrib><creatorcontrib>Tolozano-Benites, Elena</creatorcontrib><creatorcontrib>Charco-Aguirre, Jorge</creatorcontrib><creatorcontrib>Barzola-Monteses, Julio</creatorcontrib><creatorcontrib>Cevallos-Torres, Lorenzo</creatorcontrib><title>Supporting the Characterization of Preeclampsia Patients Through Descriptive and Clustering Analysis</title><title>Electronics (Basel)</title><description>One of the most common causes of maternal death during pregnancy is preeclampsia. A deeper understanding of the patient’s features can aid in the hospital’s clinical care distribution. However, at the IESS Los Ceibos Hospital, these types of studies have not been carried out for preeclampsia. Therefore, in this work, we describe the application of descriptive and clustering analysis to characterize preeclamptic patients. Preeclamptic patients treated at the IESS Los Ceibos Hospital in Guayaquil comprised the dataset used in this study. Descriptive and clustering analysis allowed us to find that severe preeclampsia (O141) is the most common diagnosis when preeclamptic patients arrive at the hospitalization unit, representing 79.5% of the cases. Moreover, women whose maternal age falls between 26 and 35 years have the highest prevalence of preeclampsia, representing 55.4% of the cases. Finally, adult patients in their late 30s or older are often diagnosed with severe preeclampsia (O141) and often require many hours of hospital care during the first two visits. These findings will help to generate care and prevention policies, such as the use of a low dose of aspirin, in these age groups to avoid the complications that preeclampsia can cause.</description><subject>Age</subject><subject>Altitude</subject><subject>Aspirin</subject><subject>Care and treatment</subject><subject>Cluster analysis</subject><subject>Clustering</subject><subject>Eclampsia</subject><subject>Ethnicity</subject><subject>Hospitals</subject><subject>Hypertension</subject><subject>Maternal mortality</subject><subject>Minority &amp; ethnic groups</subject><subject>Morbidity</subject><subject>Mothers</subject><subject>Patient outcomes</subject><subject>Population</subject><subject>Postpartum period</subject><subject>Preeclampsia</subject><subject>Pregnancy complications</subject><subject>Prenatal care</subject><subject>Womens health</subject><issn>2079-9292</issn><issn>2079-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNptUU1LAzEQXUTBUvsLvAQ8t-Zjd5McS_2EggXreYnZSTdlu1mTrFB_vSkVVOjMYYbHe48ZXpZdEzxjTOJbaEFH7zqrA2GU5aLIz7IRxVxOJZX0_M9-mU1C2OJUkjDB8CirX4e-dz7aboNiA2jRKK90BG-_VLSuQ86glQfQrdr1wSq0SjB0MaB1492wadAdBO1tH-0nINXVaNEO4aBPhvNOtftgw1V2YVQbYPIzx9nbw_168TRdvjw-L-bLqaaljFOgRnMoqGSkFFjmBAw3BTAlFGZCclqX9TvBkirCSqCcFLWhkpcFFpxrYGyc3Rx9e-8-Bgix2rrBpyNCxUieY1GSXPyyNqqFynbGxfTyzgZdzQWRIlE4T6zZCVbqGnZWuw6MTfg_ATsKtHcheDBV7-1O-X1FcHUIqjoRFPsGIAaI3Q</recordid><startdate>20241201</startdate><enddate>20241201</enddate><creator>Parrales-Bravo, Franklin</creator><creator>Caicedo-Quiroz, Rosangela</creator><creator>Vasquez-Cevallos, Leonel</creator><creator>Tolozano-Benites, Elena</creator><creator>Charco-Aguirre, Jorge</creator><creator>Barzola-Monteses, Julio</creator><creator>Cevallos-Torres, Lorenzo</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0002-7211-2891</orcidid><orcidid>https://orcid.org/0000-0002-0099-0345</orcidid><orcidid>https://orcid.org/0000-0002-9332-0825</orcidid><orcidid>https://orcid.org/0000-0003-0737-9132</orcidid><orcidid>https://orcid.org/0000-0002-6283-8197</orcidid><orcidid>https://orcid.org/0000-0002-0186-3807</orcidid><orcidid>https://orcid.org/0000-0003-2732-979X</orcidid></search><sort><creationdate>20241201</creationdate><title>Supporting the Characterization of Preeclampsia Patients Through Descriptive and Clustering Analysis</title><author>Parrales-Bravo, Franklin ; Caicedo-Quiroz, Rosangela ; Vasquez-Cevallos, Leonel ; Tolozano-Benites, Elena ; Charco-Aguirre, Jorge ; Barzola-Monteses, Julio ; Cevallos-Torres, Lorenzo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c269t-e2fc7e52931680941ef7f5e3a8a038972d6db1092a136e2715df297650877ce33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Age</topic><topic>Altitude</topic><topic>Aspirin</topic><topic>Care and treatment</topic><topic>Cluster analysis</topic><topic>Clustering</topic><topic>Eclampsia</topic><topic>Ethnicity</topic><topic>Hospitals</topic><topic>Hypertension</topic><topic>Maternal mortality</topic><topic>Minority &amp; ethnic groups</topic><topic>Morbidity</topic><topic>Mothers</topic><topic>Patient outcomes</topic><topic>Population</topic><topic>Postpartum period</topic><topic>Preeclampsia</topic><topic>Pregnancy complications</topic><topic>Prenatal care</topic><topic>Womens health</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Parrales-Bravo, Franklin</creatorcontrib><creatorcontrib>Caicedo-Quiroz, Rosangela</creatorcontrib><creatorcontrib>Vasquez-Cevallos, Leonel</creatorcontrib><creatorcontrib>Tolozano-Benites, Elena</creatorcontrib><creatorcontrib>Charco-Aguirre, Jorge</creatorcontrib><creatorcontrib>Barzola-Monteses, Julio</creatorcontrib><creatorcontrib>Cevallos-Torres, Lorenzo</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Electronics (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Parrales-Bravo, Franklin</au><au>Caicedo-Quiroz, Rosangela</au><au>Vasquez-Cevallos, Leonel</au><au>Tolozano-Benites, Elena</au><au>Charco-Aguirre, Jorge</au><au>Barzola-Monteses, Julio</au><au>Cevallos-Torres, Lorenzo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Supporting the Characterization of Preeclampsia Patients Through Descriptive and Clustering Analysis</atitle><jtitle>Electronics (Basel)</jtitle><date>2024-12-01</date><risdate>2024</risdate><volume>13</volume><issue>23</issue><spage>4854</spage><pages>4854-</pages><issn>2079-9292</issn><eissn>2079-9292</eissn><abstract>One of the most common causes of maternal death during pregnancy is preeclampsia. A deeper understanding of the patient’s features can aid in the hospital’s clinical care distribution. However, at the IESS Los Ceibos Hospital, these types of studies have not been carried out for preeclampsia. Therefore, in this work, we describe the application of descriptive and clustering analysis to characterize preeclamptic patients. Preeclamptic patients treated at the IESS Los Ceibos Hospital in Guayaquil comprised the dataset used in this study. Descriptive and clustering analysis allowed us to find that severe preeclampsia (O141) is the most common diagnosis when preeclamptic patients arrive at the hospitalization unit, representing 79.5% of the cases. Moreover, women whose maternal age falls between 26 and 35 years have the highest prevalence of preeclampsia, representing 55.4% of the cases. Finally, adult patients in their late 30s or older are often diagnosed with severe preeclampsia (O141) and often require many hours of hospital care during the first two visits. These findings will help to generate care and prevention policies, such as the use of a low dose of aspirin, in these age groups to avoid the complications that preeclampsia can cause.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/electronics13234854</doi><orcidid>https://orcid.org/0000-0002-7211-2891</orcidid><orcidid>https://orcid.org/0000-0002-0099-0345</orcidid><orcidid>https://orcid.org/0000-0002-9332-0825</orcidid><orcidid>https://orcid.org/0000-0003-0737-9132</orcidid><orcidid>https://orcid.org/0000-0002-6283-8197</orcidid><orcidid>https://orcid.org/0000-0002-0186-3807</orcidid><orcidid>https://orcid.org/0000-0003-2732-979X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2079-9292
ispartof Electronics (Basel), 2024-12, Vol.13 (23), p.4854
issn 2079-9292
2079-9292
language eng
recordid cdi_proquest_journals_3144086148
source MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals
subjects Age
Altitude
Aspirin
Care and treatment
Cluster analysis
Clustering
Eclampsia
Ethnicity
Hospitals
Hypertension
Maternal mortality
Minority & ethnic groups
Morbidity
Mothers
Patient outcomes
Population
Postpartum period
Preeclampsia
Pregnancy complications
Prenatal care
Womens health
title Supporting the Characterization of Preeclampsia Patients Through Descriptive and Clustering Analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T18%3A05%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Supporting%20the%20Characterization%20of%20Preeclampsia%20Patients%20Through%20Descriptive%20and%20Clustering%20Analysis&rft.jtitle=Electronics%20(Basel)&rft.au=Parrales-Bravo,%20Franklin&rft.date=2024-12-01&rft.volume=13&rft.issue=23&rft.spage=4854&rft.pages=4854-&rft.issn=2079-9292&rft.eissn=2079-9292&rft_id=info:doi/10.3390/electronics13234854&rft_dat=%3Cgale_proqu%3EA819848377%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3144086148&rft_id=info:pmid/&rft_galeid=A819848377&rfr_iscdi=true