Supporting the Characterization of Preeclampsia Patients Through Descriptive and Clustering Analysis
One of the most common causes of maternal death during pregnancy is preeclampsia. A deeper understanding of the patient’s features can aid in the hospital’s clinical care distribution. However, at the IESS Los Ceibos Hospital, these types of studies have not been carried out for preeclampsia. Theref...
Gespeichert in:
Veröffentlicht in: | Electronics (Basel) 2024-12, Vol.13 (23), p.4854 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 23 |
container_start_page | 4854 |
container_title | Electronics (Basel) |
container_volume | 13 |
creator | Parrales-Bravo, Franklin Caicedo-Quiroz, Rosangela Vasquez-Cevallos, Leonel Tolozano-Benites, Elena Charco-Aguirre, Jorge Barzola-Monteses, Julio Cevallos-Torres, Lorenzo |
description | One of the most common causes of maternal death during pregnancy is preeclampsia. A deeper understanding of the patient’s features can aid in the hospital’s clinical care distribution. However, at the IESS Los Ceibos Hospital, these types of studies have not been carried out for preeclampsia. Therefore, in this work, we describe the application of descriptive and clustering analysis to characterize preeclamptic patients. Preeclamptic patients treated at the IESS Los Ceibos Hospital in Guayaquil comprised the dataset used in this study. Descriptive and clustering analysis allowed us to find that severe preeclampsia (O141) is the most common diagnosis when preeclamptic patients arrive at the hospitalization unit, representing 79.5% of the cases. Moreover, women whose maternal age falls between 26 and 35 years have the highest prevalence of preeclampsia, representing 55.4% of the cases. Finally, adult patients in their late 30s or older are often diagnosed with severe preeclampsia (O141) and often require many hours of hospital care during the first two visits. These findings will help to generate care and prevention policies, such as the use of a low dose of aspirin, in these age groups to avoid the complications that preeclampsia can cause. |
doi_str_mv | 10.3390/electronics13234854 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_3144086148</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A819848377</galeid><sourcerecordid>A819848377</sourcerecordid><originalsourceid>FETCH-LOGICAL-c269t-e2fc7e52931680941ef7f5e3a8a038972d6db1092a136e2715df297650877ce33</originalsourceid><addsrcrecordid>eNptUU1LAzEQXUTBUvsLvAQ8t-Zjd5McS_2EggXreYnZSTdlu1mTrFB_vSkVVOjMYYbHe48ZXpZdEzxjTOJbaEFH7zqrA2GU5aLIz7IRxVxOJZX0_M9-mU1C2OJUkjDB8CirX4e-dz7aboNiA2jRKK90BG-_VLSuQ86glQfQrdr1wSq0SjB0MaB1492wadAdBO1tH-0nINXVaNEO4aBPhvNOtftgw1V2YVQbYPIzx9nbw_168TRdvjw-L-bLqaaljFOgRnMoqGSkFFjmBAw3BTAlFGZCclqX9TvBkirCSqCcFLWhkpcFFpxrYGyc3Rx9e-8-Bgix2rrBpyNCxUieY1GSXPyyNqqFynbGxfTyzgZdzQWRIlE4T6zZCVbqGnZWuw6MTfg_ATsKtHcheDBV7-1O-X1FcHUIqjoRFPsGIAaI3Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3144086148</pqid></control><display><type>article</type><title>Supporting the Characterization of Preeclampsia Patients Through Descriptive and Clustering Analysis</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Parrales-Bravo, Franklin ; Caicedo-Quiroz, Rosangela ; Vasquez-Cevallos, Leonel ; Tolozano-Benites, Elena ; Charco-Aguirre, Jorge ; Barzola-Monteses, Julio ; Cevallos-Torres, Lorenzo</creator><creatorcontrib>Parrales-Bravo, Franklin ; Caicedo-Quiroz, Rosangela ; Vasquez-Cevallos, Leonel ; Tolozano-Benites, Elena ; Charco-Aguirre, Jorge ; Barzola-Monteses, Julio ; Cevallos-Torres, Lorenzo</creatorcontrib><description>One of the most common causes of maternal death during pregnancy is preeclampsia. A deeper understanding of the patient’s features can aid in the hospital’s clinical care distribution. However, at the IESS Los Ceibos Hospital, these types of studies have not been carried out for preeclampsia. Therefore, in this work, we describe the application of descriptive and clustering analysis to characterize preeclamptic patients. Preeclamptic patients treated at the IESS Los Ceibos Hospital in Guayaquil comprised the dataset used in this study. Descriptive and clustering analysis allowed us to find that severe preeclampsia (O141) is the most common diagnosis when preeclamptic patients arrive at the hospitalization unit, representing 79.5% of the cases. Moreover, women whose maternal age falls between 26 and 35 years have the highest prevalence of preeclampsia, representing 55.4% of the cases. Finally, adult patients in their late 30s or older are often diagnosed with severe preeclampsia (O141) and often require many hours of hospital care during the first two visits. These findings will help to generate care and prevention policies, such as the use of a low dose of aspirin, in these age groups to avoid the complications that preeclampsia can cause.</description><identifier>ISSN: 2079-9292</identifier><identifier>EISSN: 2079-9292</identifier><identifier>DOI: 10.3390/electronics13234854</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Age ; Altitude ; Aspirin ; Care and treatment ; Cluster analysis ; Clustering ; Eclampsia ; Ethnicity ; Hospitals ; Hypertension ; Maternal mortality ; Minority & ethnic groups ; Morbidity ; Mothers ; Patient outcomes ; Population ; Postpartum period ; Preeclampsia ; Pregnancy complications ; Prenatal care ; Womens health</subject><ispartof>Electronics (Basel), 2024-12, Vol.13 (23), p.4854</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c269t-e2fc7e52931680941ef7f5e3a8a038972d6db1092a136e2715df297650877ce33</cites><orcidid>0000-0002-7211-2891 ; 0000-0002-0099-0345 ; 0000-0002-9332-0825 ; 0000-0003-0737-9132 ; 0000-0002-6283-8197 ; 0000-0002-0186-3807 ; 0000-0003-2732-979X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Parrales-Bravo, Franklin</creatorcontrib><creatorcontrib>Caicedo-Quiroz, Rosangela</creatorcontrib><creatorcontrib>Vasquez-Cevallos, Leonel</creatorcontrib><creatorcontrib>Tolozano-Benites, Elena</creatorcontrib><creatorcontrib>Charco-Aguirre, Jorge</creatorcontrib><creatorcontrib>Barzola-Monteses, Julio</creatorcontrib><creatorcontrib>Cevallos-Torres, Lorenzo</creatorcontrib><title>Supporting the Characterization of Preeclampsia Patients Through Descriptive and Clustering Analysis</title><title>Electronics (Basel)</title><description>One of the most common causes of maternal death during pregnancy is preeclampsia. A deeper understanding of the patient’s features can aid in the hospital’s clinical care distribution. However, at the IESS Los Ceibos Hospital, these types of studies have not been carried out for preeclampsia. Therefore, in this work, we describe the application of descriptive and clustering analysis to characterize preeclamptic patients. Preeclamptic patients treated at the IESS Los Ceibos Hospital in Guayaquil comprised the dataset used in this study. Descriptive and clustering analysis allowed us to find that severe preeclampsia (O141) is the most common diagnosis when preeclamptic patients arrive at the hospitalization unit, representing 79.5% of the cases. Moreover, women whose maternal age falls between 26 and 35 years have the highest prevalence of preeclampsia, representing 55.4% of the cases. Finally, adult patients in their late 30s or older are often diagnosed with severe preeclampsia (O141) and often require many hours of hospital care during the first two visits. These findings will help to generate care and prevention policies, such as the use of a low dose of aspirin, in these age groups to avoid the complications that preeclampsia can cause.</description><subject>Age</subject><subject>Altitude</subject><subject>Aspirin</subject><subject>Care and treatment</subject><subject>Cluster analysis</subject><subject>Clustering</subject><subject>Eclampsia</subject><subject>Ethnicity</subject><subject>Hospitals</subject><subject>Hypertension</subject><subject>Maternal mortality</subject><subject>Minority & ethnic groups</subject><subject>Morbidity</subject><subject>Mothers</subject><subject>Patient outcomes</subject><subject>Population</subject><subject>Postpartum period</subject><subject>Preeclampsia</subject><subject>Pregnancy complications</subject><subject>Prenatal care</subject><subject>Womens health</subject><issn>2079-9292</issn><issn>2079-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNptUU1LAzEQXUTBUvsLvAQ8t-Zjd5McS_2EggXreYnZSTdlu1mTrFB_vSkVVOjMYYbHe48ZXpZdEzxjTOJbaEFH7zqrA2GU5aLIz7IRxVxOJZX0_M9-mU1C2OJUkjDB8CirX4e-dz7aboNiA2jRKK90BG-_VLSuQ86glQfQrdr1wSq0SjB0MaB1492wadAdBO1tH-0nINXVaNEO4aBPhvNOtftgw1V2YVQbYPIzx9nbw_168TRdvjw-L-bLqaaljFOgRnMoqGSkFFjmBAw3BTAlFGZCclqX9TvBkirCSqCcFLWhkpcFFpxrYGyc3Rx9e-8-Bgix2rrBpyNCxUieY1GSXPyyNqqFynbGxfTyzgZdzQWRIlE4T6zZCVbqGnZWuw6MTfg_ATsKtHcheDBV7-1O-X1FcHUIqjoRFPsGIAaI3Q</recordid><startdate>20241201</startdate><enddate>20241201</enddate><creator>Parrales-Bravo, Franklin</creator><creator>Caicedo-Quiroz, Rosangela</creator><creator>Vasquez-Cevallos, Leonel</creator><creator>Tolozano-Benites, Elena</creator><creator>Charco-Aguirre, Jorge</creator><creator>Barzola-Monteses, Julio</creator><creator>Cevallos-Torres, Lorenzo</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0002-7211-2891</orcidid><orcidid>https://orcid.org/0000-0002-0099-0345</orcidid><orcidid>https://orcid.org/0000-0002-9332-0825</orcidid><orcidid>https://orcid.org/0000-0003-0737-9132</orcidid><orcidid>https://orcid.org/0000-0002-6283-8197</orcidid><orcidid>https://orcid.org/0000-0002-0186-3807</orcidid><orcidid>https://orcid.org/0000-0003-2732-979X</orcidid></search><sort><creationdate>20241201</creationdate><title>Supporting the Characterization of Preeclampsia Patients Through Descriptive and Clustering Analysis</title><author>Parrales-Bravo, Franklin ; Caicedo-Quiroz, Rosangela ; Vasquez-Cevallos, Leonel ; Tolozano-Benites, Elena ; Charco-Aguirre, Jorge ; Barzola-Monteses, Julio ; Cevallos-Torres, Lorenzo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c269t-e2fc7e52931680941ef7f5e3a8a038972d6db1092a136e2715df297650877ce33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Age</topic><topic>Altitude</topic><topic>Aspirin</topic><topic>Care and treatment</topic><topic>Cluster analysis</topic><topic>Clustering</topic><topic>Eclampsia</topic><topic>Ethnicity</topic><topic>Hospitals</topic><topic>Hypertension</topic><topic>Maternal mortality</topic><topic>Minority & ethnic groups</topic><topic>Morbidity</topic><topic>Mothers</topic><topic>Patient outcomes</topic><topic>Population</topic><topic>Postpartum period</topic><topic>Preeclampsia</topic><topic>Pregnancy complications</topic><topic>Prenatal care</topic><topic>Womens health</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Parrales-Bravo, Franklin</creatorcontrib><creatorcontrib>Caicedo-Quiroz, Rosangela</creatorcontrib><creatorcontrib>Vasquez-Cevallos, Leonel</creatorcontrib><creatorcontrib>Tolozano-Benites, Elena</creatorcontrib><creatorcontrib>Charco-Aguirre, Jorge</creatorcontrib><creatorcontrib>Barzola-Monteses, Julio</creatorcontrib><creatorcontrib>Cevallos-Torres, Lorenzo</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Electronics (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Parrales-Bravo, Franklin</au><au>Caicedo-Quiroz, Rosangela</au><au>Vasquez-Cevallos, Leonel</au><au>Tolozano-Benites, Elena</au><au>Charco-Aguirre, Jorge</au><au>Barzola-Monteses, Julio</au><au>Cevallos-Torres, Lorenzo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Supporting the Characterization of Preeclampsia Patients Through Descriptive and Clustering Analysis</atitle><jtitle>Electronics (Basel)</jtitle><date>2024-12-01</date><risdate>2024</risdate><volume>13</volume><issue>23</issue><spage>4854</spage><pages>4854-</pages><issn>2079-9292</issn><eissn>2079-9292</eissn><abstract>One of the most common causes of maternal death during pregnancy is preeclampsia. A deeper understanding of the patient’s features can aid in the hospital’s clinical care distribution. However, at the IESS Los Ceibos Hospital, these types of studies have not been carried out for preeclampsia. Therefore, in this work, we describe the application of descriptive and clustering analysis to characterize preeclamptic patients. Preeclamptic patients treated at the IESS Los Ceibos Hospital in Guayaquil comprised the dataset used in this study. Descriptive and clustering analysis allowed us to find that severe preeclampsia (O141) is the most common diagnosis when preeclamptic patients arrive at the hospitalization unit, representing 79.5% of the cases. Moreover, women whose maternal age falls between 26 and 35 years have the highest prevalence of preeclampsia, representing 55.4% of the cases. Finally, adult patients in their late 30s or older are often diagnosed with severe preeclampsia (O141) and often require many hours of hospital care during the first two visits. These findings will help to generate care and prevention policies, such as the use of a low dose of aspirin, in these age groups to avoid the complications that preeclampsia can cause.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/electronics13234854</doi><orcidid>https://orcid.org/0000-0002-7211-2891</orcidid><orcidid>https://orcid.org/0000-0002-0099-0345</orcidid><orcidid>https://orcid.org/0000-0002-9332-0825</orcidid><orcidid>https://orcid.org/0000-0003-0737-9132</orcidid><orcidid>https://orcid.org/0000-0002-6283-8197</orcidid><orcidid>https://orcid.org/0000-0002-0186-3807</orcidid><orcidid>https://orcid.org/0000-0003-2732-979X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2079-9292 |
ispartof | Electronics (Basel), 2024-12, Vol.13 (23), p.4854 |
issn | 2079-9292 2079-9292 |
language | eng |
recordid | cdi_proquest_journals_3144086148 |
source | MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals |
subjects | Age Altitude Aspirin Care and treatment Cluster analysis Clustering Eclampsia Ethnicity Hospitals Hypertension Maternal mortality Minority & ethnic groups Morbidity Mothers Patient outcomes Population Postpartum period Preeclampsia Pregnancy complications Prenatal care Womens health |
title | Supporting the Characterization of Preeclampsia Patients Through Descriptive and Clustering Analysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T18%3A05%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Supporting%20the%20Characterization%20of%20Preeclampsia%20Patients%20Through%20Descriptive%20and%20Clustering%20Analysis&rft.jtitle=Electronics%20(Basel)&rft.au=Parrales-Bravo,%20Franklin&rft.date=2024-12-01&rft.volume=13&rft.issue=23&rft.spage=4854&rft.pages=4854-&rft.issn=2079-9292&rft.eissn=2079-9292&rft_id=info:doi/10.3390/electronics13234854&rft_dat=%3Cgale_proqu%3EA819848377%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3144086148&rft_id=info:pmid/&rft_galeid=A819848377&rfr_iscdi=true |