Hierarchical Security Authentication with Attention-Enhanced Convolutional Network for Internet of Things
As security authentication issues continue to arise in future wireless communication networks, researchers are working hard to further improve authentication techniques. Recently, physical layer authentication (PLA) has received widespread attention for its lightweight nature compared to traditional...
Gespeichert in:
Veröffentlicht in: | Electronics (Basel) 2024-12, Vol.13 (23), p.4699 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 23 |
container_start_page | 4699 |
container_title | Electronics (Basel) |
container_volume | 13 |
creator | Qiu, Xiaoying Zhao, Guangxu Yu, Jinwei Jiang, Wenbao Guo, Zhaozhong Xu, Maozhi |
description | As security authentication issues continue to arise in future wireless communication networks, researchers are working hard to further improve authentication techniques. Recently, physical layer authentication (PLA) has received widespread attention for its lightweight nature compared to traditional encryption methods based on keys and blockchain. However, the existing PLA mechanisms based on a fixed decision threshold have low reliability in dynamic environments. Moreover, PLA solutions are typically based on binary authentication, and these binary-type schemes cannot provide different levels of access control. To address these challenges, this article introduces the concept of hierarchical security authentication, aiming to achieve multi-level secure authorization access. In order to further improve the accuracy of identity verification, we design an Attention-Enhanced Convolutional Network (AECN) model that integrates the attention mechanism. Specifically, by introducing a confidence score branch, the proposed AECN-based PLA scheme completes authentication without a threshold, thus avoiding the issues stemming from inappropriate threshold settings in conventional PLA schemes. The simulation results show that our proposed AECN framework outperforms existing algorithms at different levels of security authentication. |
doi_str_mv | 10.3390/electronics13234699 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_3144086080</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A819847666</galeid><sourcerecordid>A819847666</sourcerecordid><originalsourceid>FETCH-LOGICAL-c196t-e3c51c75d6ddad1ba23940917d5b2f8675a1e8ba13e8546c61160f98d44b7ba13</originalsourceid><addsrcrecordid>eNptkTFPwzAQhSMEElXpL2CxxJxix4ljj1VVoFIFA2WOHOfSuKR2sR2q_nsclYGBu-FOn-6dnvSS5J7gOaUCP0IPKjhrtPKEZjRnQlwlkwyXIhWZyK7_7LfJzPs9jiUI5RRPEv2iwUmnOq1kj95BDU6HM1oMoQMTIgzaGnTSoUOLEEZkTboynTQKGrS05tv2wwij-hXCybpP1FqH1iaAMxCQbdG202bn75KbVvYeZr9zmnw8rbbLl3Tz9rxeLjapIoKFFKgqiCqLhjWNbEgtMyryaLdsijprOSsLSYDXklDgRc4UI4ThVvAmz-tyxNPk4fL36OzXAD5Uezu46M9XlOQ55gxzHK_ml6ud7KHSprXBSRW7gYNW1kCrI19wInheMsaigF4EylnvHbTV0emDdOeK4GrMofonB_oDVIWABQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3144086080</pqid></control><display><type>article</type><title>Hierarchical Security Authentication with Attention-Enhanced Convolutional Network for Internet of Things</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Qiu, Xiaoying ; Zhao, Guangxu ; Yu, Jinwei ; Jiang, Wenbao ; Guo, Zhaozhong ; Xu, Maozhi</creator><creatorcontrib>Qiu, Xiaoying ; Zhao, Guangxu ; Yu, Jinwei ; Jiang, Wenbao ; Guo, Zhaozhong ; Xu, Maozhi</creatorcontrib><description>As security authentication issues continue to arise in future wireless communication networks, researchers are working hard to further improve authentication techniques. Recently, physical layer authentication (PLA) has received widespread attention for its lightweight nature compared to traditional encryption methods based on keys and blockchain. However, the existing PLA mechanisms based on a fixed decision threshold have low reliability in dynamic environments. Moreover, PLA solutions are typically based on binary authentication, and these binary-type schemes cannot provide different levels of access control. To address these challenges, this article introduces the concept of hierarchical security authentication, aiming to achieve multi-level secure authorization access. In order to further improve the accuracy of identity verification, we design an Attention-Enhanced Convolutional Network (AECN) model that integrates the attention mechanism. Specifically, by introducing a confidence score branch, the proposed AECN-based PLA scheme completes authentication without a threshold, thus avoiding the issues stemming from inappropriate threshold settings in conventional PLA schemes. The simulation results show that our proposed AECN framework outperforms existing algorithms at different levels of security authentication.</description><identifier>ISSN: 2079-9292</identifier><identifier>EISSN: 2079-9292</identifier><identifier>DOI: 10.3390/electronics13234699</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Access control ; Algorithms ; Authentication ; Blockchain ; Communication ; Communication networks ; Cybersecurity ; Hypotheses ; Hypothesis testing ; Internet of Things ; Neural networks ; Smart devices ; Support vector machines ; Wireless communications ; Wireless networks</subject><ispartof>Electronics (Basel), 2024-12, Vol.13 (23), p.4699</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c196t-e3c51c75d6ddad1ba23940917d5b2f8675a1e8ba13e8546c61160f98d44b7ba13</cites><orcidid>0009-0005-0129-704X ; 0000-0002-5585-5220</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Qiu, Xiaoying</creatorcontrib><creatorcontrib>Zhao, Guangxu</creatorcontrib><creatorcontrib>Yu, Jinwei</creatorcontrib><creatorcontrib>Jiang, Wenbao</creatorcontrib><creatorcontrib>Guo, Zhaozhong</creatorcontrib><creatorcontrib>Xu, Maozhi</creatorcontrib><title>Hierarchical Security Authentication with Attention-Enhanced Convolutional Network for Internet of Things</title><title>Electronics (Basel)</title><description>As security authentication issues continue to arise in future wireless communication networks, researchers are working hard to further improve authentication techniques. Recently, physical layer authentication (PLA) has received widespread attention for its lightweight nature compared to traditional encryption methods based on keys and blockchain. However, the existing PLA mechanisms based on a fixed decision threshold have low reliability in dynamic environments. Moreover, PLA solutions are typically based on binary authentication, and these binary-type schemes cannot provide different levels of access control. To address these challenges, this article introduces the concept of hierarchical security authentication, aiming to achieve multi-level secure authorization access. In order to further improve the accuracy of identity verification, we design an Attention-Enhanced Convolutional Network (AECN) model that integrates the attention mechanism. Specifically, by introducing a confidence score branch, the proposed AECN-based PLA scheme completes authentication without a threshold, thus avoiding the issues stemming from inappropriate threshold settings in conventional PLA schemes. The simulation results show that our proposed AECN framework outperforms existing algorithms at different levels of security authentication.</description><subject>Access control</subject><subject>Algorithms</subject><subject>Authentication</subject><subject>Blockchain</subject><subject>Communication</subject><subject>Communication networks</subject><subject>Cybersecurity</subject><subject>Hypotheses</subject><subject>Hypothesis testing</subject><subject>Internet of Things</subject><subject>Neural networks</subject><subject>Smart devices</subject><subject>Support vector machines</subject><subject>Wireless communications</subject><subject>Wireless networks</subject><issn>2079-9292</issn><issn>2079-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNptkTFPwzAQhSMEElXpL2CxxJxix4ljj1VVoFIFA2WOHOfSuKR2sR2q_nsclYGBu-FOn-6dnvSS5J7gOaUCP0IPKjhrtPKEZjRnQlwlkwyXIhWZyK7_7LfJzPs9jiUI5RRPEv2iwUmnOq1kj95BDU6HM1oMoQMTIgzaGnTSoUOLEEZkTboynTQKGrS05tv2wwij-hXCybpP1FqH1iaAMxCQbdG202bn75KbVvYeZr9zmnw8rbbLl3Tz9rxeLjapIoKFFKgqiCqLhjWNbEgtMyryaLdsijprOSsLSYDXklDgRc4UI4ThVvAmz-tyxNPk4fL36OzXAD5Uezu46M9XlOQ55gxzHK_ml6ud7KHSprXBSRW7gYNW1kCrI19wInheMsaigF4EylnvHbTV0emDdOeK4GrMofonB_oDVIWABQ</recordid><startdate>20241201</startdate><enddate>20241201</enddate><creator>Qiu, Xiaoying</creator><creator>Zhao, Guangxu</creator><creator>Yu, Jinwei</creator><creator>Jiang, Wenbao</creator><creator>Guo, Zhaozhong</creator><creator>Xu, Maozhi</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0009-0005-0129-704X</orcidid><orcidid>https://orcid.org/0000-0002-5585-5220</orcidid></search><sort><creationdate>20241201</creationdate><title>Hierarchical Security Authentication with Attention-Enhanced Convolutional Network for Internet of Things</title><author>Qiu, Xiaoying ; Zhao, Guangxu ; Yu, Jinwei ; Jiang, Wenbao ; Guo, Zhaozhong ; Xu, Maozhi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c196t-e3c51c75d6ddad1ba23940917d5b2f8675a1e8ba13e8546c61160f98d44b7ba13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Access control</topic><topic>Algorithms</topic><topic>Authentication</topic><topic>Blockchain</topic><topic>Communication</topic><topic>Communication networks</topic><topic>Cybersecurity</topic><topic>Hypotheses</topic><topic>Hypothesis testing</topic><topic>Internet of Things</topic><topic>Neural networks</topic><topic>Smart devices</topic><topic>Support vector machines</topic><topic>Wireless communications</topic><topic>Wireless networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qiu, Xiaoying</creatorcontrib><creatorcontrib>Zhao, Guangxu</creatorcontrib><creatorcontrib>Yu, Jinwei</creatorcontrib><creatorcontrib>Jiang, Wenbao</creatorcontrib><creatorcontrib>Guo, Zhaozhong</creatorcontrib><creatorcontrib>Xu, Maozhi</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Electronics (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qiu, Xiaoying</au><au>Zhao, Guangxu</au><au>Yu, Jinwei</au><au>Jiang, Wenbao</au><au>Guo, Zhaozhong</au><au>Xu, Maozhi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hierarchical Security Authentication with Attention-Enhanced Convolutional Network for Internet of Things</atitle><jtitle>Electronics (Basel)</jtitle><date>2024-12-01</date><risdate>2024</risdate><volume>13</volume><issue>23</issue><spage>4699</spage><pages>4699-</pages><issn>2079-9292</issn><eissn>2079-9292</eissn><abstract>As security authentication issues continue to arise in future wireless communication networks, researchers are working hard to further improve authentication techniques. Recently, physical layer authentication (PLA) has received widespread attention for its lightweight nature compared to traditional encryption methods based on keys and blockchain. However, the existing PLA mechanisms based on a fixed decision threshold have low reliability in dynamic environments. Moreover, PLA solutions are typically based on binary authentication, and these binary-type schemes cannot provide different levels of access control. To address these challenges, this article introduces the concept of hierarchical security authentication, aiming to achieve multi-level secure authorization access. In order to further improve the accuracy of identity verification, we design an Attention-Enhanced Convolutional Network (AECN) model that integrates the attention mechanism. Specifically, by introducing a confidence score branch, the proposed AECN-based PLA scheme completes authentication without a threshold, thus avoiding the issues stemming from inappropriate threshold settings in conventional PLA schemes. The simulation results show that our proposed AECN framework outperforms existing algorithms at different levels of security authentication.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/electronics13234699</doi><orcidid>https://orcid.org/0009-0005-0129-704X</orcidid><orcidid>https://orcid.org/0000-0002-5585-5220</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2079-9292 |
ispartof | Electronics (Basel), 2024-12, Vol.13 (23), p.4699 |
issn | 2079-9292 2079-9292 |
language | eng |
recordid | cdi_proquest_journals_3144086080 |
source | MDPI - Multidisciplinary Digital Publishing Institute; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Access control Algorithms Authentication Blockchain Communication Communication networks Cybersecurity Hypotheses Hypothesis testing Internet of Things Neural networks Smart devices Support vector machines Wireless communications Wireless networks |
title | Hierarchical Security Authentication with Attention-Enhanced Convolutional Network for Internet of Things |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T14%3A42%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hierarchical%20Security%20Authentication%20with%20Attention-Enhanced%20Convolutional%20Network%20for%20Internet%20of%20Things&rft.jtitle=Electronics%20(Basel)&rft.au=Qiu,%20Xiaoying&rft.date=2024-12-01&rft.volume=13&rft.issue=23&rft.spage=4699&rft.pages=4699-&rft.issn=2079-9292&rft.eissn=2079-9292&rft_id=info:doi/10.3390/electronics13234699&rft_dat=%3Cgale_proqu%3EA819847666%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3144086080&rft_id=info:pmid/&rft_galeid=A819847666&rfr_iscdi=true |