ClusteredLog: Optimizing Log Structures for Efficient Data Recovery and Integrity Management in Database Systems
In modern database systems, efficient log management is crucial for ensuring data integrity and facilitating swift recovery from potential data corruption or system failures. Traditional log structures, which store operations sequentially as they occur, often lead to significant delays in accessing...
Gespeichert in:
Veröffentlicht in: | Electronics (Basel) 2024-12, Vol.13 (23), p.4723 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 23 |
container_start_page | 4723 |
container_title | Electronics (Basel) |
container_volume | 13 |
creator | Ahmad, Mariha Siddika Panda, Brajendra Nath |
description | In modern database systems, efficient log management is crucial for ensuring data integrity and facilitating swift recovery from potential data corruption or system failures. Traditional log structures, which store operations sequentially as they occur, often lead to significant delays in accessing and recovering specific data objects due to their scattered nature across the log. ClusteredLog addresses the limitations of traditional logging methods by implementing a novel logical organization of log entries. Instead of simply storing operations sequentially, it groups related operations for each data item into clusters. As a result, ClusteredLog enables faster identification and recovery of damaged data items and thus reduces the need for extensive log scanning, improving overall efficiency in database recovery processes. We introduce data structures and algorithms that facilitate the creation of these clustered logs, which also track dependencies and update operations on data items. Simulation studies demonstrate that our clustered log method significantly accelerates damage assessment and recovery times compared to traditional sequential logs, particularly as the number of transactions and data items increases. This optimization is pivotal for maintaining data integrity and operational efficiency in databases, especially in scenarios involving potential malicious modifications. |
doi_str_mv | 10.3390/electronics13234723 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_3144081039</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A819847690</galeid><sourcerecordid>A819847690</sourcerecordid><originalsourceid>FETCH-LOGICAL-c241t-442192710fa83956f99b9869ca8935bd5fdc850756155d747135c053da463c2d3</originalsourceid><addsrcrecordid>eNptkU1LAzEQhhdRsKi_wEvAc2uSSXY33kqtH1AR_DgvaXayRLpJTbJC_fWu1oMHZw7zwfPOe5iiOGd0BqDoJW7Q5Bi8M4kBB1FxOCgmnFZqqrjih3_64-IspTc6hmJQA50U28VmSBkjtqvQXZHHbXa9-3S-I-NMnnMcTB4iJmJDJEtrnXHoM7nWWZMnNOED445o35J7n7GLLu_Ig_a6w_4bc_6HXOuE5Hk3-vTptDiyepPw7LeeFK83y5fF3XT1eHu_mK-mhguWp0JwpnjFqNU1KFlapdaqLpXRtQK5bqVtTS1pJUsmZVuJioE0VEKrRQmGt3BSXOzvbmN4HzDl5i0M0Y-WDTAhaM0oqJGa7alOb7Bx3oYctRmzxd6Z4NG6cT-vmapFVSo6CmAvMDGkFNE22-h6HXcNo833O5p_3gFfT1WAbQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3144081039</pqid></control><display><type>article</type><title>ClusteredLog: Optimizing Log Structures for Efficient Data Recovery and Integrity Management in Database Systems</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><creator>Ahmad, Mariha Siddika ; Panda, Brajendra Nath</creator><creatorcontrib>Ahmad, Mariha Siddika ; Panda, Brajendra Nath</creatorcontrib><description>In modern database systems, efficient log management is crucial for ensuring data integrity and facilitating swift recovery from potential data corruption or system failures. Traditional log structures, which store operations sequentially as they occur, often lead to significant delays in accessing and recovering specific data objects due to their scattered nature across the log. ClusteredLog addresses the limitations of traditional logging methods by implementing a novel logical organization of log entries. Instead of simply storing operations sequentially, it groups related operations for each data item into clusters. As a result, ClusteredLog enables faster identification and recovery of damaged data items and thus reduces the need for extensive log scanning, improving overall efficiency in database recovery processes. We introduce data structures and algorithms that facilitate the creation of these clustered logs, which also track dependencies and update operations on data items. Simulation studies demonstrate that our clustered log method significantly accelerates damage assessment and recovery times compared to traditional sequential logs, particularly as the number of transactions and data items increases. This optimization is pivotal for maintaining data integrity and operational efficiency in databases, especially in scenarios involving potential malicious modifications.</description><identifier>ISSN: 2079-9292</identifier><identifier>EISSN: 2079-9292</identifier><identifier>DOI: 10.3390/electronics13234723</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Algorithms ; Behavior ; Clustering ; Cybersecurity ; Damage assessment ; Damage detection ; Data base management systems ; Data integrity ; Data logging ; Data recovery ; Data structures ; Datasets ; Efficiency ; Integrity ; Literature reviews ; Optimization ; System failures</subject><ispartof>Electronics (Basel), 2024-12, Vol.13 (23), p.4723</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c241t-442192710fa83956f99b9869ca8935bd5fdc850756155d747135c053da463c2d3</cites><orcidid>0000-0003-1117-9328 ; 0009-0009-2057-4574</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Ahmad, Mariha Siddika</creatorcontrib><creatorcontrib>Panda, Brajendra Nath</creatorcontrib><title>ClusteredLog: Optimizing Log Structures for Efficient Data Recovery and Integrity Management in Database Systems</title><title>Electronics (Basel)</title><description>In modern database systems, efficient log management is crucial for ensuring data integrity and facilitating swift recovery from potential data corruption or system failures. Traditional log structures, which store operations sequentially as they occur, often lead to significant delays in accessing and recovering specific data objects due to their scattered nature across the log. ClusteredLog addresses the limitations of traditional logging methods by implementing a novel logical organization of log entries. Instead of simply storing operations sequentially, it groups related operations for each data item into clusters. As a result, ClusteredLog enables faster identification and recovery of damaged data items and thus reduces the need for extensive log scanning, improving overall efficiency in database recovery processes. We introduce data structures and algorithms that facilitate the creation of these clustered logs, which also track dependencies and update operations on data items. Simulation studies demonstrate that our clustered log method significantly accelerates damage assessment and recovery times compared to traditional sequential logs, particularly as the number of transactions and data items increases. This optimization is pivotal for maintaining data integrity and operational efficiency in databases, especially in scenarios involving potential malicious modifications.</description><subject>Algorithms</subject><subject>Behavior</subject><subject>Clustering</subject><subject>Cybersecurity</subject><subject>Damage assessment</subject><subject>Damage detection</subject><subject>Data base management systems</subject><subject>Data integrity</subject><subject>Data logging</subject><subject>Data recovery</subject><subject>Data structures</subject><subject>Datasets</subject><subject>Efficiency</subject><subject>Integrity</subject><subject>Literature reviews</subject><subject>Optimization</subject><subject>System failures</subject><issn>2079-9292</issn><issn>2079-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNptkU1LAzEQhhdRsKi_wEvAc2uSSXY33kqtH1AR_DgvaXayRLpJTbJC_fWu1oMHZw7zwfPOe5iiOGd0BqDoJW7Q5Bi8M4kBB1FxOCgmnFZqqrjih3_64-IspTc6hmJQA50U28VmSBkjtqvQXZHHbXa9-3S-I-NMnnMcTB4iJmJDJEtrnXHoM7nWWZMnNOED445o35J7n7GLLu_Ig_a6w_4bc_6HXOuE5Hk3-vTptDiyepPw7LeeFK83y5fF3XT1eHu_mK-mhguWp0JwpnjFqNU1KFlapdaqLpXRtQK5bqVtTS1pJUsmZVuJioE0VEKrRQmGt3BSXOzvbmN4HzDl5i0M0Y-WDTAhaM0oqJGa7alOb7Bx3oYctRmzxd6Z4NG6cT-vmapFVSo6CmAvMDGkFNE22-h6HXcNo833O5p_3gFfT1WAbQ</recordid><startdate>20241201</startdate><enddate>20241201</enddate><creator>Ahmad, Mariha Siddika</creator><creator>Panda, Brajendra Nath</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0003-1117-9328</orcidid><orcidid>https://orcid.org/0009-0009-2057-4574</orcidid></search><sort><creationdate>20241201</creationdate><title>ClusteredLog: Optimizing Log Structures for Efficient Data Recovery and Integrity Management in Database Systems</title><author>Ahmad, Mariha Siddika ; Panda, Brajendra Nath</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c241t-442192710fa83956f99b9869ca8935bd5fdc850756155d747135c053da463c2d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Behavior</topic><topic>Clustering</topic><topic>Cybersecurity</topic><topic>Damage assessment</topic><topic>Damage detection</topic><topic>Data base management systems</topic><topic>Data integrity</topic><topic>Data logging</topic><topic>Data recovery</topic><topic>Data structures</topic><topic>Datasets</topic><topic>Efficiency</topic><topic>Integrity</topic><topic>Literature reviews</topic><topic>Optimization</topic><topic>System failures</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ahmad, Mariha Siddika</creatorcontrib><creatorcontrib>Panda, Brajendra Nath</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Electronics (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ahmad, Mariha Siddika</au><au>Panda, Brajendra Nath</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ClusteredLog: Optimizing Log Structures for Efficient Data Recovery and Integrity Management in Database Systems</atitle><jtitle>Electronics (Basel)</jtitle><date>2024-12-01</date><risdate>2024</risdate><volume>13</volume><issue>23</issue><spage>4723</spage><pages>4723-</pages><issn>2079-9292</issn><eissn>2079-9292</eissn><abstract>In modern database systems, efficient log management is crucial for ensuring data integrity and facilitating swift recovery from potential data corruption or system failures. Traditional log structures, which store operations sequentially as they occur, often lead to significant delays in accessing and recovering specific data objects due to their scattered nature across the log. ClusteredLog addresses the limitations of traditional logging methods by implementing a novel logical organization of log entries. Instead of simply storing operations sequentially, it groups related operations for each data item into clusters. As a result, ClusteredLog enables faster identification and recovery of damaged data items and thus reduces the need for extensive log scanning, improving overall efficiency in database recovery processes. We introduce data structures and algorithms that facilitate the creation of these clustered logs, which also track dependencies and update operations on data items. Simulation studies demonstrate that our clustered log method significantly accelerates damage assessment and recovery times compared to traditional sequential logs, particularly as the number of transactions and data items increases. This optimization is pivotal for maintaining data integrity and operational efficiency in databases, especially in scenarios involving potential malicious modifications.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/electronics13234723</doi><orcidid>https://orcid.org/0000-0003-1117-9328</orcidid><orcidid>https://orcid.org/0009-0009-2057-4574</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2079-9292 |
ispartof | Electronics (Basel), 2024-12, Vol.13 (23), p.4723 |
issn | 2079-9292 2079-9292 |
language | eng |
recordid | cdi_proquest_journals_3144081039 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; MDPI - Multidisciplinary Digital Publishing Institute |
subjects | Algorithms Behavior Clustering Cybersecurity Damage assessment Damage detection Data base management systems Data integrity Data logging Data recovery Data structures Datasets Efficiency Integrity Literature reviews Optimization System failures |
title | ClusteredLog: Optimizing Log Structures for Efficient Data Recovery and Integrity Management in Database Systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T03%3A12%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ClusteredLog:%20Optimizing%20Log%20Structures%20for%20Efficient%20Data%20Recovery%20and%20Integrity%20Management%20in%20Database%20Systems&rft.jtitle=Electronics%20(Basel)&rft.au=Ahmad,%20Mariha%20Siddika&rft.date=2024-12-01&rft.volume=13&rft.issue=23&rft.spage=4723&rft.pages=4723-&rft.issn=2079-9292&rft.eissn=2079-9292&rft_id=info:doi/10.3390/electronics13234723&rft_dat=%3Cgale_proqu%3EA819847690%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3144081039&rft_id=info:pmid/&rft_galeid=A819847690&rfr_iscdi=true |