Self-learning chebyshev fuzzy neural finite time control with application to active power filter
This paper proposes a Self-constructing Chebyshev recursive fuzzy neural network (SCCRFNN) controller using a non-singular terminal sliding-mode controller (NSTSMC) for a class of nonlinear systems. The proposed SCCRFNN structurally combines the Chebyshev neural network (CNN) based on Chebyshev poly...
Gespeichert in:
Veröffentlicht in: | Nonlinear dynamics 2025-02, Vol.113 (3), p.2391-2409 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2409 |
---|---|
container_issue | 3 |
container_start_page | 2391 |
container_title | Nonlinear dynamics |
container_volume | 113 |
creator | Wang, Youchuang Fei, Juntao |
description | This paper proposes a Self-constructing Chebyshev recursive fuzzy neural network (SCCRFNN) controller using a non-singular terminal sliding-mode controller (NSTSMC) for a class of nonlinear systems. The proposed SCCRFNN structurally combines the Chebyshev neural network (CNN) based on Chebyshev polynomial and the recursive fuzzy neural network (RFNN) to improve the accuracy of a nonlinear approximation, and it also introduces self—constructing algorithm to optimize the structure of neural network. The new proposed SCCRFNN combines the advantages of the two neural networks to achieve a better approximation performance for the nonlinear systems. The main advantages of SCCRFNN are that not only can it handle large-scale problems due to the usage of CNN but also it can adjust the number of hidden layer nodes, which contributes to optimize the overall structure of neural network. And a non-singular terminal sliding-mode controller (NSTSMC) is used with the proposed neural network, which ensure the robustness of controlled system and can converge in a finite time. The proposed SCCRFNN using NSTSMC is utilized to a second-order nonlinear system, that is active power filter (APF) system, to demonstrate the robustness and control performance. A simulation and a hardware experiment are carried out to verify the dynamic property and feasibility of proposed strategy. |
doi_str_mv | 10.1007/s11071-024-10363-x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3143469403</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3143469403</sourcerecordid><originalsourceid>FETCH-LOGICAL-c156t-4424f083c1347fdc9619347f3a9bf803b8d54b78d98ed60aefdb6465e3472dff3</originalsourceid><addsrcrecordid>eNotkF1LwzAUhoMoOKd_wKuA19WTJk2bSxl-wcALFXYX0zRxGV1Tk3Ru-_V2zqtz4DznfeFB6JrALQEo7yIhUJIMcpYRoJxm2xM0IUVJs5yLxSmagBhPIGBxji5iXAEAzaGaoM8309qsNSp0rvvCemnqXVyaDbbDfr_DnRmCarF1nUsGJ7c2WPsuBd_iH5eWWPV967RKznc4eax0chuDe_9jwvjUJhMu0ZlVbTRX_3OKPh4f3mfP2fz16WV2P880KXjKGMuZhYpqQllpGy04EYeNKlHbCmhdNQWry6oRlWk4KGObmjNemBHKG2vpFN0cc_vgvwcTk1z5IXRjpaSEUcYFAzpS-ZHSwccYjJV9cGsVdpKAPJiUR5NyNCn_TMot_QV6-GiR</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3143469403</pqid></control><display><type>article</type><title>Self-learning chebyshev fuzzy neural finite time control with application to active power filter</title><source>Springer Nature - Complete Springer Journals</source><creator>Wang, Youchuang ; Fei, Juntao</creator><creatorcontrib>Wang, Youchuang ; Fei, Juntao</creatorcontrib><description>This paper proposes a Self-constructing Chebyshev recursive fuzzy neural network (SCCRFNN) controller using a non-singular terminal sliding-mode controller (NSTSMC) for a class of nonlinear systems. The proposed SCCRFNN structurally combines the Chebyshev neural network (CNN) based on Chebyshev polynomial and the recursive fuzzy neural network (RFNN) to improve the accuracy of a nonlinear approximation, and it also introduces self—constructing algorithm to optimize the structure of neural network. The new proposed SCCRFNN combines the advantages of the two neural networks to achieve a better approximation performance for the nonlinear systems. The main advantages of SCCRFNN are that not only can it handle large-scale problems due to the usage of CNN but also it can adjust the number of hidden layer nodes, which contributes to optimize the overall structure of neural network. And a non-singular terminal sliding-mode controller (NSTSMC) is used with the proposed neural network, which ensure the robustness of controlled system and can converge in a finite time. The proposed SCCRFNN using NSTSMC is utilized to a second-order nonlinear system, that is active power filter (APF) system, to demonstrate the robustness and control performance. A simulation and a hardware experiment are carried out to verify the dynamic property and feasibility of proposed strategy.</description><identifier>ISSN: 0924-090X</identifier><identifier>EISSN: 1573-269X</identifier><identifier>DOI: 10.1007/s11071-024-10363-x</identifier><language>eng</language><publisher>Dordrecht: Springer Nature B.V</publisher><subject>Algorithms ; Approximation ; Artificial neural networks ; Chebyshev approximation ; Controllers ; Fuzzy control ; Fuzzy logic ; Neural networks ; Nonlinear control ; Nonlinear systems ; Polynomials ; Robust control ; Sliding mode control</subject><ispartof>Nonlinear dynamics, 2025-02, Vol.113 (3), p.2391-2409</ispartof><rights>Copyright Springer Nature B.V. Feb 2025</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c156t-4424f083c1347fdc9619347f3a9bf803b8d54b78d98ed60aefdb6465e3472dff3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27915,27916</link.rule.ids></links><search><creatorcontrib>Wang, Youchuang</creatorcontrib><creatorcontrib>Fei, Juntao</creatorcontrib><title>Self-learning chebyshev fuzzy neural finite time control with application to active power filter</title><title>Nonlinear dynamics</title><description>This paper proposes a Self-constructing Chebyshev recursive fuzzy neural network (SCCRFNN) controller using a non-singular terminal sliding-mode controller (NSTSMC) for a class of nonlinear systems. The proposed SCCRFNN structurally combines the Chebyshev neural network (CNN) based on Chebyshev polynomial and the recursive fuzzy neural network (RFNN) to improve the accuracy of a nonlinear approximation, and it also introduces self—constructing algorithm to optimize the structure of neural network. The new proposed SCCRFNN combines the advantages of the two neural networks to achieve a better approximation performance for the nonlinear systems. The main advantages of SCCRFNN are that not only can it handle large-scale problems due to the usage of CNN but also it can adjust the number of hidden layer nodes, which contributes to optimize the overall structure of neural network. And a non-singular terminal sliding-mode controller (NSTSMC) is used with the proposed neural network, which ensure the robustness of controlled system and can converge in a finite time. The proposed SCCRFNN using NSTSMC is utilized to a second-order nonlinear system, that is active power filter (APF) system, to demonstrate the robustness and control performance. A simulation and a hardware experiment are carried out to verify the dynamic property and feasibility of proposed strategy.</description><subject>Algorithms</subject><subject>Approximation</subject><subject>Artificial neural networks</subject><subject>Chebyshev approximation</subject><subject>Controllers</subject><subject>Fuzzy control</subject><subject>Fuzzy logic</subject><subject>Neural networks</subject><subject>Nonlinear control</subject><subject>Nonlinear systems</subject><subject>Polynomials</subject><subject>Robust control</subject><subject>Sliding mode control</subject><issn>0924-090X</issn><issn>1573-269X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><recordid>eNotkF1LwzAUhoMoOKd_wKuA19WTJk2bSxl-wcALFXYX0zRxGV1Tk3Ru-_V2zqtz4DznfeFB6JrALQEo7yIhUJIMcpYRoJxm2xM0IUVJs5yLxSmagBhPIGBxji5iXAEAzaGaoM8309qsNSp0rvvCemnqXVyaDbbDfr_DnRmCarF1nUsGJ7c2WPsuBd_iH5eWWPV967RKznc4eax0chuDe_9jwvjUJhMu0ZlVbTRX_3OKPh4f3mfP2fz16WV2P880KXjKGMuZhYpqQllpGy04EYeNKlHbCmhdNQWry6oRlWk4KGObmjNemBHKG2vpFN0cc_vgvwcTk1z5IXRjpaSEUcYFAzpS-ZHSwccYjJV9cGsVdpKAPJiUR5NyNCn_TMot_QV6-GiR</recordid><startdate>202502</startdate><enddate>202502</enddate><creator>Wang, Youchuang</creator><creator>Fei, Juntao</creator><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>202502</creationdate><title>Self-learning chebyshev fuzzy neural finite time control with application to active power filter</title><author>Wang, Youchuang ; Fei, Juntao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c156t-4424f083c1347fdc9619347f3a9bf803b8d54b78d98ed60aefdb6465e3472dff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Algorithms</topic><topic>Approximation</topic><topic>Artificial neural networks</topic><topic>Chebyshev approximation</topic><topic>Controllers</topic><topic>Fuzzy control</topic><topic>Fuzzy logic</topic><topic>Neural networks</topic><topic>Nonlinear control</topic><topic>Nonlinear systems</topic><topic>Polynomials</topic><topic>Robust control</topic><topic>Sliding mode control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Youchuang</creatorcontrib><creatorcontrib>Fei, Juntao</creatorcontrib><collection>CrossRef</collection><jtitle>Nonlinear dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Youchuang</au><au>Fei, Juntao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Self-learning chebyshev fuzzy neural finite time control with application to active power filter</atitle><jtitle>Nonlinear dynamics</jtitle><date>2025-02</date><risdate>2025</risdate><volume>113</volume><issue>3</issue><spage>2391</spage><epage>2409</epage><pages>2391-2409</pages><issn>0924-090X</issn><eissn>1573-269X</eissn><abstract>This paper proposes a Self-constructing Chebyshev recursive fuzzy neural network (SCCRFNN) controller using a non-singular terminal sliding-mode controller (NSTSMC) for a class of nonlinear systems. The proposed SCCRFNN structurally combines the Chebyshev neural network (CNN) based on Chebyshev polynomial and the recursive fuzzy neural network (RFNN) to improve the accuracy of a nonlinear approximation, and it also introduces self—constructing algorithm to optimize the structure of neural network. The new proposed SCCRFNN combines the advantages of the two neural networks to achieve a better approximation performance for the nonlinear systems. The main advantages of SCCRFNN are that not only can it handle large-scale problems due to the usage of CNN but also it can adjust the number of hidden layer nodes, which contributes to optimize the overall structure of neural network. And a non-singular terminal sliding-mode controller (NSTSMC) is used with the proposed neural network, which ensure the robustness of controlled system and can converge in a finite time. The proposed SCCRFNN using NSTSMC is utilized to a second-order nonlinear system, that is active power filter (APF) system, to demonstrate the robustness and control performance. A simulation and a hardware experiment are carried out to verify the dynamic property and feasibility of proposed strategy.</abstract><cop>Dordrecht</cop><pub>Springer Nature B.V</pub><doi>10.1007/s11071-024-10363-x</doi><tpages>19</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0924-090X |
ispartof | Nonlinear dynamics, 2025-02, Vol.113 (3), p.2391-2409 |
issn | 0924-090X 1573-269X |
language | eng |
recordid | cdi_proquest_journals_3143469403 |
source | Springer Nature - Complete Springer Journals |
subjects | Algorithms Approximation Artificial neural networks Chebyshev approximation Controllers Fuzzy control Fuzzy logic Neural networks Nonlinear control Nonlinear systems Polynomials Robust control Sliding mode control |
title | Self-learning chebyshev fuzzy neural finite time control with application to active power filter |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T05%3A00%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Self-learning%20chebyshev%20fuzzy%20neural%20finite%20time%20control%20with%20application%20to%20active%20power%20filter&rft.jtitle=Nonlinear%20dynamics&rft.au=Wang,%20Youchuang&rft.date=2025-02&rft.volume=113&rft.issue=3&rft.spage=2391&rft.epage=2409&rft.pages=2391-2409&rft.issn=0924-090X&rft.eissn=1573-269X&rft_id=info:doi/10.1007/s11071-024-10363-x&rft_dat=%3Cproquest_cross%3E3143469403%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3143469403&rft_id=info:pmid/&rfr_iscdi=true |