Impact resistance of polyurethane elastomer enhanced by organic montmorillonite with interlayer anchored polymer chains

The development of materials with excellent impact resistance is essential for safety protection. Polyurethane elastomer (PUE) is widely used in impact protection; however, it has low dynamic compressive strength and poor energy absorption efficiency under high‐speed impact, limiting its in‐depth ap...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Polymer composites 2024-12, Vol.45 (18), p.16660-16673
Hauptverfasser: Zhao, Zengqiong, Fu, Zhao, Qi, Feng, Di, Chunyang, Qin, Yuanbo, Zhang, Biao, Gao, Jun, Chen, Jing, Wang, Jinbin, Ouyang, Xiaoping, Zhong, Xiangli
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 16673
container_issue 18
container_start_page 16660
container_title Polymer composites
container_volume 45
creator Zhao, Zengqiong
Fu, Zhao
Qi, Feng
Di, Chunyang
Qin, Yuanbo
Zhang, Biao
Gao, Jun
Chen, Jing
Wang, Jinbin
Ouyang, Xiaoping
Zhong, Xiangli
description The development of materials with excellent impact resistance is essential for safety protection. Polyurethane elastomer (PUE) is widely used in impact protection; however, it has low dynamic compressive strength and poor energy absorption efficiency under high‐speed impact, limiting its in‐depth application in the protection field. Herein, an organic montmorillonite (MMT) with interlayer anchored polymer chains, named M@NH3+, was synthesized via the dual modification of MMT involving surface grafting and cation intercalation by macromolecular amino silane, which was used to enhance the impact resistance of PUE. Based on the uniform dispersion of M@NH3+ within the PUE matrix, the strong bonding at the polymer‐filler interface and the synergistic action between M@NH3+ lamellae, PUE‐M@NH3+ composite exhibited excellent mechanical properties and energy absorption capacity. Compared with pure PUE, the elastic modulus (+98.3%), static compressive strength (+37.0%), dynamic compressive strength (+35.4%) and impact energy absorption (+50.8%) of PUE‐2wt%M@NH3+ were significantly improved, which shows that it has potential applications in the field of high‐speed impact protection. Highlights Organic MMT with interlayer anchored polymer chains was prepared. The large interlayer spacing of M@NH3+ facilitates its dispersion within the matrix. The interconnected M@NH3+ lamellae can collaboratively disperse impact stress. The impact energy absorption of PUE composite has been remarkably improved. Schematic diagram of the interlayer anchored structure of montmorillonite and its reinforcement mechanism in polyurethane.
doi_str_mv 10.1002/pc.28919
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3143465691</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3143465691</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1849-28465a52af7b41cd1e4a5eac8bfc31cb53ef1795591dd5c375d0de53913847db3</originalsourceid><addsrcrecordid>eNp10M1KxDAUBeAgCo6j4CME3Ljp2DRN2yxl8GdgQBe6Dml6azO0SU0yDH17U-vW1d1851w4CN2SdEPSNHsY1SarOOFnaEVYXiUpK_g5WqVZmSUV5eUluvL-ECUpCrpCp90wShWwA699kEYBti0ebT8dHYROGsDQSx_sAA6D6WbR4HrC1n1JoxUerAmDdbrvrdEB8EmHDmsTwPVyipkY6KyLmblzLlGd1MZfo4tW9h5u_u4afT4_fWxfk_3by277uE8UqXKeZFVeMMky2ZZ1TlRDIJcMpKrqVlGiakahJSVnjJOmYYqWrEkbYJQTWuVlU9M1ult6R2e_j-CDONijM_GloCSnsb2Ido3uF6Wc9d5BK0anB-kmQVIxzypGJX5njTRZ6En3MP3rxPt28T8u3nuK</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3143465691</pqid></control><display><type>article</type><title>Impact resistance of polyurethane elastomer enhanced by organic montmorillonite with interlayer anchored polymer chains</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Zhao, Zengqiong ; Fu, Zhao ; Qi, Feng ; Di, Chunyang ; Qin, Yuanbo ; Zhang, Biao ; Gao, Jun ; Chen, Jing ; Wang, Jinbin ; Ouyang, Xiaoping ; Zhong, Xiangli</creator><creatorcontrib>Zhao, Zengqiong ; Fu, Zhao ; Qi, Feng ; Di, Chunyang ; Qin, Yuanbo ; Zhang, Biao ; Gao, Jun ; Chen, Jing ; Wang, Jinbin ; Ouyang, Xiaoping ; Zhong, Xiangli</creatorcontrib><description>The development of materials with excellent impact resistance is essential for safety protection. Polyurethane elastomer (PUE) is widely used in impact protection; however, it has low dynamic compressive strength and poor energy absorption efficiency under high‐speed impact, limiting its in‐depth application in the protection field. Herein, an organic montmorillonite (MMT) with interlayer anchored polymer chains, named M@NH3+, was synthesized via the dual modification of MMT involving surface grafting and cation intercalation by macromolecular amino silane, which was used to enhance the impact resistance of PUE. Based on the uniform dispersion of M@NH3+ within the PUE matrix, the strong bonding at the polymer‐filler interface and the synergistic action between M@NH3+ lamellae, PUE‐M@NH3+ composite exhibited excellent mechanical properties and energy absorption capacity. Compared with pure PUE, the elastic modulus (+98.3%), static compressive strength (+37.0%), dynamic compressive strength (+35.4%) and impact energy absorption (+50.8%) of PUE‐2wt%M@NH3+ were significantly improved, which shows that it has potential applications in the field of high‐speed impact protection. Highlights Organic MMT with interlayer anchored polymer chains was prepared. The large interlayer spacing of M@NH3+ facilitates its dispersion within the matrix. The interconnected M@NH3+ lamellae can collaboratively disperse impact stress. The impact energy absorption of PUE composite has been remarkably improved. Schematic diagram of the interlayer anchored structure of montmorillonite and its reinforcement mechanism in polyurethane.</description><identifier>ISSN: 0272-8397</identifier><identifier>EISSN: 1548-0569</identifier><identifier>DOI: 10.1002/pc.28919</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>Ammonia ; Chains (polymeric) ; Compressive strength ; dual modification ; Elastic properties ; Elastomers ; Energy absorption ; impact protection ; Impact resistance ; interlayer anchored ; Interlayers ; Mechanical properties ; Modulus of elasticity ; Montmorillonite ; Polymers ; polyurethane elastomer ; Polyurethane resins</subject><ispartof>Polymer composites, 2024-12, Vol.45 (18), p.16660-16673</ispartof><rights>2024 Society of Plastics Engineers.</rights><rights>2024 Society of Plastics Engineers</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1849-28465a52af7b41cd1e4a5eac8bfc31cb53ef1795591dd5c375d0de53913847db3</cites><orcidid>0009-0006-8029-2032 ; 0009-0003-7889-3523 ; 0000-0002-2639-9131</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpc.28919$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpc.28919$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,778,782,1414,27907,27908,45557,45558</link.rule.ids></links><search><creatorcontrib>Zhao, Zengqiong</creatorcontrib><creatorcontrib>Fu, Zhao</creatorcontrib><creatorcontrib>Qi, Feng</creatorcontrib><creatorcontrib>Di, Chunyang</creatorcontrib><creatorcontrib>Qin, Yuanbo</creatorcontrib><creatorcontrib>Zhang, Biao</creatorcontrib><creatorcontrib>Gao, Jun</creatorcontrib><creatorcontrib>Chen, Jing</creatorcontrib><creatorcontrib>Wang, Jinbin</creatorcontrib><creatorcontrib>Ouyang, Xiaoping</creatorcontrib><creatorcontrib>Zhong, Xiangli</creatorcontrib><title>Impact resistance of polyurethane elastomer enhanced by organic montmorillonite with interlayer anchored polymer chains</title><title>Polymer composites</title><description>The development of materials with excellent impact resistance is essential for safety protection. Polyurethane elastomer (PUE) is widely used in impact protection; however, it has low dynamic compressive strength and poor energy absorption efficiency under high‐speed impact, limiting its in‐depth application in the protection field. Herein, an organic montmorillonite (MMT) with interlayer anchored polymer chains, named M@NH3+, was synthesized via the dual modification of MMT involving surface grafting and cation intercalation by macromolecular amino silane, which was used to enhance the impact resistance of PUE. Based on the uniform dispersion of M@NH3+ within the PUE matrix, the strong bonding at the polymer‐filler interface and the synergistic action between M@NH3+ lamellae, PUE‐M@NH3+ composite exhibited excellent mechanical properties and energy absorption capacity. Compared with pure PUE, the elastic modulus (+98.3%), static compressive strength (+37.0%), dynamic compressive strength (+35.4%) and impact energy absorption (+50.8%) of PUE‐2wt%M@NH3+ were significantly improved, which shows that it has potential applications in the field of high‐speed impact protection. Highlights Organic MMT with interlayer anchored polymer chains was prepared. The large interlayer spacing of M@NH3+ facilitates its dispersion within the matrix. The interconnected M@NH3+ lamellae can collaboratively disperse impact stress. The impact energy absorption of PUE composite has been remarkably improved. Schematic diagram of the interlayer anchored structure of montmorillonite and its reinforcement mechanism in polyurethane.</description><subject>Ammonia</subject><subject>Chains (polymeric)</subject><subject>Compressive strength</subject><subject>dual modification</subject><subject>Elastic properties</subject><subject>Elastomers</subject><subject>Energy absorption</subject><subject>impact protection</subject><subject>Impact resistance</subject><subject>interlayer anchored</subject><subject>Interlayers</subject><subject>Mechanical properties</subject><subject>Modulus of elasticity</subject><subject>Montmorillonite</subject><subject>Polymers</subject><subject>polyurethane elastomer</subject><subject>Polyurethane resins</subject><issn>0272-8397</issn><issn>1548-0569</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp10M1KxDAUBeAgCo6j4CME3Ljp2DRN2yxl8GdgQBe6Dml6azO0SU0yDH17U-vW1d1851w4CN2SdEPSNHsY1SarOOFnaEVYXiUpK_g5WqVZmSUV5eUluvL-ECUpCrpCp90wShWwA699kEYBti0ebT8dHYROGsDQSx_sAA6D6WbR4HrC1n1JoxUerAmDdbrvrdEB8EmHDmsTwPVyipkY6KyLmblzLlGd1MZfo4tW9h5u_u4afT4_fWxfk_3by277uE8UqXKeZFVeMMky2ZZ1TlRDIJcMpKrqVlGiakahJSVnjJOmYYqWrEkbYJQTWuVlU9M1ult6R2e_j-CDONijM_GloCSnsb2Ido3uF6Wc9d5BK0anB-kmQVIxzypGJX5njTRZ6En3MP3rxPt28T8u3nuK</recordid><startdate>20241220</startdate><enddate>20241220</enddate><creator>Zhao, Zengqiong</creator><creator>Fu, Zhao</creator><creator>Qi, Feng</creator><creator>Di, Chunyang</creator><creator>Qin, Yuanbo</creator><creator>Zhang, Biao</creator><creator>Gao, Jun</creator><creator>Chen, Jing</creator><creator>Wang, Jinbin</creator><creator>Ouyang, Xiaoping</creator><creator>Zhong, Xiangli</creator><general>John Wiley &amp; Sons, Inc</general><general>Blackwell Publishing Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0009-0006-8029-2032</orcidid><orcidid>https://orcid.org/0009-0003-7889-3523</orcidid><orcidid>https://orcid.org/0000-0002-2639-9131</orcidid></search><sort><creationdate>20241220</creationdate><title>Impact resistance of polyurethane elastomer enhanced by organic montmorillonite with interlayer anchored polymer chains</title><author>Zhao, Zengqiong ; Fu, Zhao ; Qi, Feng ; Di, Chunyang ; Qin, Yuanbo ; Zhang, Biao ; Gao, Jun ; Chen, Jing ; Wang, Jinbin ; Ouyang, Xiaoping ; Zhong, Xiangli</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1849-28465a52af7b41cd1e4a5eac8bfc31cb53ef1795591dd5c375d0de53913847db3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Ammonia</topic><topic>Chains (polymeric)</topic><topic>Compressive strength</topic><topic>dual modification</topic><topic>Elastic properties</topic><topic>Elastomers</topic><topic>Energy absorption</topic><topic>impact protection</topic><topic>Impact resistance</topic><topic>interlayer anchored</topic><topic>Interlayers</topic><topic>Mechanical properties</topic><topic>Modulus of elasticity</topic><topic>Montmorillonite</topic><topic>Polymers</topic><topic>polyurethane elastomer</topic><topic>Polyurethane resins</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Zengqiong</creatorcontrib><creatorcontrib>Fu, Zhao</creatorcontrib><creatorcontrib>Qi, Feng</creatorcontrib><creatorcontrib>Di, Chunyang</creatorcontrib><creatorcontrib>Qin, Yuanbo</creatorcontrib><creatorcontrib>Zhang, Biao</creatorcontrib><creatorcontrib>Gao, Jun</creatorcontrib><creatorcontrib>Chen, Jing</creatorcontrib><creatorcontrib>Wang, Jinbin</creatorcontrib><creatorcontrib>Ouyang, Xiaoping</creatorcontrib><creatorcontrib>Zhong, Xiangli</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Polymer composites</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Zengqiong</au><au>Fu, Zhao</au><au>Qi, Feng</au><au>Di, Chunyang</au><au>Qin, Yuanbo</au><au>Zhang, Biao</au><au>Gao, Jun</au><au>Chen, Jing</au><au>Wang, Jinbin</au><au>Ouyang, Xiaoping</au><au>Zhong, Xiangli</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Impact resistance of polyurethane elastomer enhanced by organic montmorillonite with interlayer anchored polymer chains</atitle><jtitle>Polymer composites</jtitle><date>2024-12-20</date><risdate>2024</risdate><volume>45</volume><issue>18</issue><spage>16660</spage><epage>16673</epage><pages>16660-16673</pages><issn>0272-8397</issn><eissn>1548-0569</eissn><abstract>The development of materials with excellent impact resistance is essential for safety protection. Polyurethane elastomer (PUE) is widely used in impact protection; however, it has low dynamic compressive strength and poor energy absorption efficiency under high‐speed impact, limiting its in‐depth application in the protection field. Herein, an organic montmorillonite (MMT) with interlayer anchored polymer chains, named M@NH3+, was synthesized via the dual modification of MMT involving surface grafting and cation intercalation by macromolecular amino silane, which was used to enhance the impact resistance of PUE. Based on the uniform dispersion of M@NH3+ within the PUE matrix, the strong bonding at the polymer‐filler interface and the synergistic action between M@NH3+ lamellae, PUE‐M@NH3+ composite exhibited excellent mechanical properties and energy absorption capacity. Compared with pure PUE, the elastic modulus (+98.3%), static compressive strength (+37.0%), dynamic compressive strength (+35.4%) and impact energy absorption (+50.8%) of PUE‐2wt%M@NH3+ were significantly improved, which shows that it has potential applications in the field of high‐speed impact protection. Highlights Organic MMT with interlayer anchored polymer chains was prepared. The large interlayer spacing of M@NH3+ facilitates its dispersion within the matrix. The interconnected M@NH3+ lamellae can collaboratively disperse impact stress. The impact energy absorption of PUE composite has been remarkably improved. Schematic diagram of the interlayer anchored structure of montmorillonite and its reinforcement mechanism in polyurethane.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/pc.28919</doi><tpages>14</tpages><orcidid>https://orcid.org/0009-0006-8029-2032</orcidid><orcidid>https://orcid.org/0009-0003-7889-3523</orcidid><orcidid>https://orcid.org/0000-0002-2639-9131</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0272-8397
ispartof Polymer composites, 2024-12, Vol.45 (18), p.16660-16673
issn 0272-8397
1548-0569
language eng
recordid cdi_proquest_journals_3143465691
source Wiley Online Library Journals Frontfile Complete
subjects Ammonia
Chains (polymeric)
Compressive strength
dual modification
Elastic properties
Elastomers
Energy absorption
impact protection
Impact resistance
interlayer anchored
Interlayers
Mechanical properties
Modulus of elasticity
Montmorillonite
Polymers
polyurethane elastomer
Polyurethane resins
title Impact resistance of polyurethane elastomer enhanced by organic montmorillonite with interlayer anchored polymer chains
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T20%3A14%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Impact%20resistance%20of%20polyurethane%20elastomer%20enhanced%20by%20organic%20montmorillonite%20with%20interlayer%20anchored%20polymer%20chains&rft.jtitle=Polymer%20composites&rft.au=Zhao,%20Zengqiong&rft.date=2024-12-20&rft.volume=45&rft.issue=18&rft.spage=16660&rft.epage=16673&rft.pages=16660-16673&rft.issn=0272-8397&rft.eissn=1548-0569&rft_id=info:doi/10.1002/pc.28919&rft_dat=%3Cproquest_cross%3E3143465691%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3143465691&rft_id=info:pmid/&rfr_iscdi=true