Groundwater recharge in basement aquifers in subhumid drylands of sub-Saharan Africa
Characterising groundwater recharge is fundamental for sustainable groundwater management. This study focuses on assessing recharge in drylands using four experimental plots under different land-use practices in crystalline basement aquifers in three southern African countries (Chitedze in Malawi, K...
Gespeichert in:
Veröffentlicht in: | Hydrogeology journal 2024-12, Vol.32 (8), p.1993-2009 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2009 |
---|---|
container_issue | 8 |
container_start_page | 1993 |
container_title | Hydrogeology journal |
container_volume | 32 |
creator | Mudimbu, D. Namaona, W. Sinda, M. C. Brauns, B. Gooddy, D. C. Darling, W. G. Banda, K. Phiri, E. Nalivata, P. C. Mtambanengwe, F. Mapfumo, P. MacDonald, A. M. Owen, R. J. S. Lapworth, D. J. |
description | Characterising groundwater recharge is fundamental for sustainable groundwater management. This study focuses on assessing recharge in drylands using four experimental plots under different land-use practices in crystalline basement aquifers in three southern African countries (Chitedze in Malawi, Kabeleka and Liempe in Zambia, and Domboshawa in Zimbabwe). Several methods, including water-table fluctuation (WTF), chloride mass balance (CMB), water stable isotopes (δ
18
O and δ
2
H) and dissolved gases, were used to quantify annual recharge rates, recharge sources and groundwater residence times. This informed the development of a conceptual model of groundwater recharge in unpumped basement aquifers. Using WTF, across all sites/years, the range of annual median recharge was found to be in the range of 2.8–14.1% rainfall. Recharge was observed for most years across all sites and was controlled by hydrogeological settings, rainfall totals and antecedent conditions, i.e. the groundwater level at the end of the preceding dry season. Based on groundwater level observations and water stable isotope analysis, for sites where there has been extensive use of conservation agriculture (in time and space), there is some evidence of earlier and greater recharge compared to conventional agriculture at paired sites. Additionally, there is evidence of high lateral connectivity in shallow, permeable layers and high local connectivity in the aquifers which facilitate discharge to surface drainage. This leads to a lower proportion of modern recharge at these unpumped sites (typically |
doi_str_mv | 10.1007/s10040-024-02837-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_sprin</sourceid><recordid>TN_cdi_proquest_journals_3143464853</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3143464853</sourcerecordid><originalsourceid>FETCH-LOGICAL-p157t-2717e1402ea952161a814bdd3980b3e6eb3a1905c07bb66074db86bd313899ef3</originalsourceid><addsrcrecordid>eNpFkF1LwzAUhoMoOKd_wKuA19GcJm3ayzF0EwZeOK9DspxuHVvaJS3ivzdbBS_OB4fnfL2EPAJ_Bs7VS0xecsYzmawUiskrMgEpcsYhV9eXHFgGSt6Suxj3POGgxISsF6EdvPs2PQYacLMzYYu08dSaiEf0PTWnoakxxHMxDnY3HBtHXfg5GO8ibetzkX2a1Gg8ndWh2Zh7clObQ8SHvzglX2-v6_mSrT4W7_PZinXpqJ5lChSC5BmaKs-gAFOCtM6JquRWYIFWGKh4vuHK2qLgSjpbFtYJEGVVYS2m5Gmc24X2NGDs9b4dgk8rtUgPy0KWuUiUGKnYhcZvMfxTwPVZPj3Kp5N8-iKfluIXrvtiTg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3143464853</pqid></control><display><type>article</type><title>Groundwater recharge in basement aquifers in subhumid drylands of sub-Saharan Africa</title><source>SpringerLink Journals - AutoHoldings</source><creator>Mudimbu, D. ; Namaona, W. ; Sinda, M. C. ; Brauns, B. ; Gooddy, D. C. ; Darling, W. G. ; Banda, K. ; Phiri, E. ; Nalivata, P. C. ; Mtambanengwe, F. ; Mapfumo, P. ; MacDonald, A. M. ; Owen, R. J. S. ; Lapworth, D. J.</creator><creatorcontrib>Mudimbu, D. ; Namaona, W. ; Sinda, M. C. ; Brauns, B. ; Gooddy, D. C. ; Darling, W. G. ; Banda, K. ; Phiri, E. ; Nalivata, P. C. ; Mtambanengwe, F. ; Mapfumo, P. ; MacDonald, A. M. ; Owen, R. J. S. ; Lapworth, D. J.</creatorcontrib><description>Characterising groundwater recharge is fundamental for sustainable groundwater management. This study focuses on assessing recharge in drylands using four experimental plots under different land-use practices in crystalline basement aquifers in three southern African countries (Chitedze in Malawi, Kabeleka and Liempe in Zambia, and Domboshawa in Zimbabwe). Several methods, including water-table fluctuation (WTF), chloride mass balance (CMB), water stable isotopes (δ
18
O and δ
2
H) and dissolved gases, were used to quantify annual recharge rates, recharge sources and groundwater residence times. This informed the development of a conceptual model of groundwater recharge in unpumped basement aquifers. Using WTF, across all sites/years, the range of annual median recharge was found to be in the range of 2.8–14.1% rainfall. Recharge was observed for most years across all sites and was controlled by hydrogeological settings, rainfall totals and antecedent conditions, i.e. the groundwater level at the end of the preceding dry season. Based on groundwater level observations and water stable isotope analysis, for sites where there has been extensive use of conservation agriculture (in time and space), there is some evidence of earlier and greater recharge compared to conventional agriculture at paired sites. Additionally, there is evidence of high lateral connectivity in shallow, permeable layers and high local connectivity in the aquifers which facilitate discharge to surface drainage. This leads to a lower proportion of modern recharge at these unpumped sites (typically <10%) compared to other studies using comparable methods in pumped boreholes, which highlights the importance of groundwater capture due to pumping.</description><identifier>ISSN: 1431-2174</identifier><identifier>EISSN: 1435-0157</identifier><identifier>DOI: 10.1007/s10040-024-02837-4</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Agricultural conservation ; Agriculture ; Aquatic Pollution ; Aquifer recharge ; Aquifers ; Arid lands ; Arid zones ; Basements ; Boreholes ; Conservation ; Dissolved gases ; Drainage ; Dry season ; Earth and Environmental Science ; Earth Sciences ; Farm buildings ; Farming ; Gases ; Geology ; Geophysics/Geodesy ; Groundwater ; Groundwater levels ; Groundwater management ; Groundwater recharge ; Groundwater table ; Hydrogeology ; Hydrology/Water Resources ; Isotopes ; Land use ; Land use management ; Mass balance ; Precipitation ; Rainfall ; Stable isotopes ; Surface drainage ; Sustainability management ; Waste Water Technology ; Water conservation ; Water Management ; Water Pollution Control ; Water Quality/Water Pollution ; Water table</subject><ispartof>Hydrogeology journal, 2024-12, Vol.32 (8), p.1993-2009</ispartof><rights>British Geological Survey, UKRI 2024</rights><rights>Copyright Springer Nature B.V. Dec 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-7838-7960</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10040-024-02837-4$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10040-024-02837-4$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Mudimbu, D.</creatorcontrib><creatorcontrib>Namaona, W.</creatorcontrib><creatorcontrib>Sinda, M. C.</creatorcontrib><creatorcontrib>Brauns, B.</creatorcontrib><creatorcontrib>Gooddy, D. C.</creatorcontrib><creatorcontrib>Darling, W. G.</creatorcontrib><creatorcontrib>Banda, K.</creatorcontrib><creatorcontrib>Phiri, E.</creatorcontrib><creatorcontrib>Nalivata, P. C.</creatorcontrib><creatorcontrib>Mtambanengwe, F.</creatorcontrib><creatorcontrib>Mapfumo, P.</creatorcontrib><creatorcontrib>MacDonald, A. M.</creatorcontrib><creatorcontrib>Owen, R. J. S.</creatorcontrib><creatorcontrib>Lapworth, D. J.</creatorcontrib><title>Groundwater recharge in basement aquifers in subhumid drylands of sub-Saharan Africa</title><title>Hydrogeology journal</title><addtitle>Hydrogeol J</addtitle><description>Characterising groundwater recharge is fundamental for sustainable groundwater management. This study focuses on assessing recharge in drylands using four experimental plots under different land-use practices in crystalline basement aquifers in three southern African countries (Chitedze in Malawi, Kabeleka and Liempe in Zambia, and Domboshawa in Zimbabwe). Several methods, including water-table fluctuation (WTF), chloride mass balance (CMB), water stable isotopes (δ
18
O and δ
2
H) and dissolved gases, were used to quantify annual recharge rates, recharge sources and groundwater residence times. This informed the development of a conceptual model of groundwater recharge in unpumped basement aquifers. Using WTF, across all sites/years, the range of annual median recharge was found to be in the range of 2.8–14.1% rainfall. Recharge was observed for most years across all sites and was controlled by hydrogeological settings, rainfall totals and antecedent conditions, i.e. the groundwater level at the end of the preceding dry season. Based on groundwater level observations and water stable isotope analysis, for sites where there has been extensive use of conservation agriculture (in time and space), there is some evidence of earlier and greater recharge compared to conventional agriculture at paired sites. Additionally, there is evidence of high lateral connectivity in shallow, permeable layers and high local connectivity in the aquifers which facilitate discharge to surface drainage. This leads to a lower proportion of modern recharge at these unpumped sites (typically <10%) compared to other studies using comparable methods in pumped boreholes, which highlights the importance of groundwater capture due to pumping.</description><subject>Agricultural conservation</subject><subject>Agriculture</subject><subject>Aquatic Pollution</subject><subject>Aquifer recharge</subject><subject>Aquifers</subject><subject>Arid lands</subject><subject>Arid zones</subject><subject>Basements</subject><subject>Boreholes</subject><subject>Conservation</subject><subject>Dissolved gases</subject><subject>Drainage</subject><subject>Dry season</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Farm buildings</subject><subject>Farming</subject><subject>Gases</subject><subject>Geology</subject><subject>Geophysics/Geodesy</subject><subject>Groundwater</subject><subject>Groundwater levels</subject><subject>Groundwater management</subject><subject>Groundwater recharge</subject><subject>Groundwater table</subject><subject>Hydrogeology</subject><subject>Hydrology/Water Resources</subject><subject>Isotopes</subject><subject>Land use</subject><subject>Land use management</subject><subject>Mass balance</subject><subject>Precipitation</subject><subject>Rainfall</subject><subject>Stable isotopes</subject><subject>Surface drainage</subject><subject>Sustainability management</subject><subject>Waste Water Technology</subject><subject>Water conservation</subject><subject>Water Management</subject><subject>Water Pollution Control</subject><subject>Water Quality/Water Pollution</subject><subject>Water table</subject><issn>1431-2174</issn><issn>1435-0157</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNpFkF1LwzAUhoMoOKd_wKuA19GcJm3ayzF0EwZeOK9DspxuHVvaJS3ivzdbBS_OB4fnfL2EPAJ_Bs7VS0xecsYzmawUiskrMgEpcsYhV9eXHFgGSt6Suxj3POGgxISsF6EdvPs2PQYacLMzYYu08dSaiEf0PTWnoakxxHMxDnY3HBtHXfg5GO8ibetzkX2a1Gg8ndWh2Zh7clObQ8SHvzglX2-v6_mSrT4W7_PZinXpqJ5lChSC5BmaKs-gAFOCtM6JquRWYIFWGKh4vuHK2qLgSjpbFtYJEGVVYS2m5Gmc24X2NGDs9b4dgk8rtUgPy0KWuUiUGKnYhcZvMfxTwPVZPj3Kp5N8-iKfluIXrvtiTg</recordid><startdate>20241201</startdate><enddate>20241201</enddate><creator>Mudimbu, D.</creator><creator>Namaona, W.</creator><creator>Sinda, M. C.</creator><creator>Brauns, B.</creator><creator>Gooddy, D. C.</creator><creator>Darling, W. G.</creator><creator>Banda, K.</creator><creator>Phiri, E.</creator><creator>Nalivata, P. C.</creator><creator>Mtambanengwe, F.</creator><creator>Mapfumo, P.</creator><creator>MacDonald, A. M.</creator><creator>Owen, R. J. S.</creator><creator>Lapworth, D. J.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>7QH</scope><scope>7ST</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0001-7838-7960</orcidid></search><sort><creationdate>20241201</creationdate><title>Groundwater recharge in basement aquifers in subhumid drylands of sub-Saharan Africa</title><author>Mudimbu, D. ; Namaona, W. ; Sinda, M. C. ; Brauns, B. ; Gooddy, D. C. ; Darling, W. G. ; Banda, K. ; Phiri, E. ; Nalivata, P. C. ; Mtambanengwe, F. ; Mapfumo, P. ; MacDonald, A. M. ; Owen, R. J. S. ; Lapworth, D. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p157t-2717e1402ea952161a814bdd3980b3e6eb3a1905c07bb66074db86bd313899ef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Agricultural conservation</topic><topic>Agriculture</topic><topic>Aquatic Pollution</topic><topic>Aquifer recharge</topic><topic>Aquifers</topic><topic>Arid lands</topic><topic>Arid zones</topic><topic>Basements</topic><topic>Boreholes</topic><topic>Conservation</topic><topic>Dissolved gases</topic><topic>Drainage</topic><topic>Dry season</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Farm buildings</topic><topic>Farming</topic><topic>Gases</topic><topic>Geology</topic><topic>Geophysics/Geodesy</topic><topic>Groundwater</topic><topic>Groundwater levels</topic><topic>Groundwater management</topic><topic>Groundwater recharge</topic><topic>Groundwater table</topic><topic>Hydrogeology</topic><topic>Hydrology/Water Resources</topic><topic>Isotopes</topic><topic>Land use</topic><topic>Land use management</topic><topic>Mass balance</topic><topic>Precipitation</topic><topic>Rainfall</topic><topic>Stable isotopes</topic><topic>Surface drainage</topic><topic>Sustainability management</topic><topic>Waste Water Technology</topic><topic>Water conservation</topic><topic>Water Management</topic><topic>Water Pollution Control</topic><topic>Water Quality/Water Pollution</topic><topic>Water table</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mudimbu, D.</creatorcontrib><creatorcontrib>Namaona, W.</creatorcontrib><creatorcontrib>Sinda, M. C.</creatorcontrib><creatorcontrib>Brauns, B.</creatorcontrib><creatorcontrib>Gooddy, D. C.</creatorcontrib><creatorcontrib>Darling, W. G.</creatorcontrib><creatorcontrib>Banda, K.</creatorcontrib><creatorcontrib>Phiri, E.</creatorcontrib><creatorcontrib>Nalivata, P. C.</creatorcontrib><creatorcontrib>Mtambanengwe, F.</creatorcontrib><creatorcontrib>Mapfumo, P.</creatorcontrib><creatorcontrib>MacDonald, A. M.</creatorcontrib><creatorcontrib>Owen, R. J. S.</creatorcontrib><creatorcontrib>Lapworth, D. J.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Aqualine</collection><collection>Environment Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Environment Abstracts</collection><jtitle>Hydrogeology journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mudimbu, D.</au><au>Namaona, W.</au><au>Sinda, M. C.</au><au>Brauns, B.</au><au>Gooddy, D. C.</au><au>Darling, W. G.</au><au>Banda, K.</au><au>Phiri, E.</au><au>Nalivata, P. C.</au><au>Mtambanengwe, F.</au><au>Mapfumo, P.</au><au>MacDonald, A. M.</au><au>Owen, R. J. S.</au><au>Lapworth, D. J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Groundwater recharge in basement aquifers in subhumid drylands of sub-Saharan Africa</atitle><jtitle>Hydrogeology journal</jtitle><stitle>Hydrogeol J</stitle><date>2024-12-01</date><risdate>2024</risdate><volume>32</volume><issue>8</issue><spage>1993</spage><epage>2009</epage><pages>1993-2009</pages><issn>1431-2174</issn><eissn>1435-0157</eissn><abstract>Characterising groundwater recharge is fundamental for sustainable groundwater management. This study focuses on assessing recharge in drylands using four experimental plots under different land-use practices in crystalline basement aquifers in three southern African countries (Chitedze in Malawi, Kabeleka and Liempe in Zambia, and Domboshawa in Zimbabwe). Several methods, including water-table fluctuation (WTF), chloride mass balance (CMB), water stable isotopes (δ
18
O and δ
2
H) and dissolved gases, were used to quantify annual recharge rates, recharge sources and groundwater residence times. This informed the development of a conceptual model of groundwater recharge in unpumped basement aquifers. Using WTF, across all sites/years, the range of annual median recharge was found to be in the range of 2.8–14.1% rainfall. Recharge was observed for most years across all sites and was controlled by hydrogeological settings, rainfall totals and antecedent conditions, i.e. the groundwater level at the end of the preceding dry season. Based on groundwater level observations and water stable isotope analysis, for sites where there has been extensive use of conservation agriculture (in time and space), there is some evidence of earlier and greater recharge compared to conventional agriculture at paired sites. Additionally, there is evidence of high lateral connectivity in shallow, permeable layers and high local connectivity in the aquifers which facilitate discharge to surface drainage. This leads to a lower proportion of modern recharge at these unpumped sites (typically <10%) compared to other studies using comparable methods in pumped boreholes, which highlights the importance of groundwater capture due to pumping.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s10040-024-02837-4</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0001-7838-7960</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1431-2174 |
ispartof | Hydrogeology journal, 2024-12, Vol.32 (8), p.1993-2009 |
issn | 1431-2174 1435-0157 |
language | eng |
recordid | cdi_proquest_journals_3143464853 |
source | SpringerLink Journals - AutoHoldings |
subjects | Agricultural conservation Agriculture Aquatic Pollution Aquifer recharge Aquifers Arid lands Arid zones Basements Boreholes Conservation Dissolved gases Drainage Dry season Earth and Environmental Science Earth Sciences Farm buildings Farming Gases Geology Geophysics/Geodesy Groundwater Groundwater levels Groundwater management Groundwater recharge Groundwater table Hydrogeology Hydrology/Water Resources Isotopes Land use Land use management Mass balance Precipitation Rainfall Stable isotopes Surface drainage Sustainability management Waste Water Technology Water conservation Water Management Water Pollution Control Water Quality/Water Pollution Water table |
title | Groundwater recharge in basement aquifers in subhumid drylands of sub-Saharan Africa |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T16%3A40%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Groundwater%20recharge%20in%20basement%20aquifers%20in%20subhumid%20drylands%20of%20sub-Saharan%20Africa&rft.jtitle=Hydrogeology%20journal&rft.au=Mudimbu,%20D.&rft.date=2024-12-01&rft.volume=32&rft.issue=8&rft.spage=1993&rft.epage=2009&rft.pages=1993-2009&rft.issn=1431-2174&rft.eissn=1435-0157&rft_id=info:doi/10.1007/s10040-024-02837-4&rft_dat=%3Cproquest_sprin%3E3143464853%3C/proquest_sprin%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3143464853&rft_id=info:pmid/&rfr_iscdi=true |