Polynomial approximation of discounted moments

We introduce an approximation strategy for the discounted moments of a stochastic process that can approximate the true moments for a large class of problems. These moments appear in pricing formulas of financial products such as bonds and credit derivatives. The approximation relies on a high-order...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Finance and stochastics 2025, Vol.29 (1), p.63-95
Hauptverfasser: Zhao, Chenyu, van Beek, Misha, Spreij, Peter, Ba, Makhtar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 95
container_issue 1
container_start_page 63
container_title Finance and stochastics
container_volume 29
creator Zhao, Chenyu
van Beek, Misha
Spreij, Peter
Ba, Makhtar
description We introduce an approximation strategy for the discounted moments of a stochastic process that can approximate the true moments for a large class of problems. These moments appear in pricing formulas of financial products such as bonds and credit derivatives. The approximation relies on a high-order power series expansion of the infinitesimal generator and draws parallels with the theory of polynomial processes. We demonstrate applications to bond pricing and credit derivatives. In the special cases that allow an analytical solution, the approximation error decreases to around 10 to 100 times machine precision for higher orders. When no analytical solution exists, we numerically compare the approximation with existing numerical techniques.
doi_str_mv 10.1007/s00780-024-00550-4
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3143463385</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3143463385</sourcerecordid><originalsourceid>FETCH-LOGICAL-c244t-91156dcca9f598e8cad76b7d17731ed9a6c6257f7aa840e1d3e145e15a3a21aa3</originalsourceid><addsrcrecordid>eNp9kM1LxDAQxYMouK7-A54KnrPO5KNpjrL4BQt60HOISSpdts2atOD-90YrePMyc3nvzZsfIZcIKwRQ17mMBigwQQGkBCqOyAIFZxSRsWOyAC00ZboRp-Qs5y0AMAlyQVbPcXcYYt_ZXWX3-xQ_u96OXRyq2Fa-yy5Owxh81cc-DGM-Jyet3eVw8buX5PXu9mX9QDdP94_rmw11TIiRakRZe-esbqVuQuOsV_Wb8qgUx-C1rV3NpGqVtY2AgJ4HFDKgtNwytJYvydWcWxp9TCGPZhunNJSThpe3RM15I4uKzSqXYs4ptGafSv10MAjmm4uZuZjCxfxwMaKY-GzKRTy8h_QX_Y_rC-vAZTk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3143463385</pqid></control><display><type>article</type><title>Polynomial approximation of discounted moments</title><source>SpringerLink Journals - AutoHoldings</source><creator>Zhao, Chenyu ; van Beek, Misha ; Spreij, Peter ; Ba, Makhtar</creator><creatorcontrib>Zhao, Chenyu ; van Beek, Misha ; Spreij, Peter ; Ba, Makhtar</creatorcontrib><description>We introduce an approximation strategy for the discounted moments of a stochastic process that can approximate the true moments for a large class of problems. These moments appear in pricing formulas of financial products such as bonds and credit derivatives. The approximation relies on a high-order power series expansion of the infinitesimal generator and draws parallels with the theory of polynomial processes. We demonstrate applications to bond pricing and credit derivatives. In the special cases that allow an analytical solution, the approximation error decreases to around 10 to 100 times machine precision for higher orders. When no analytical solution exists, we numerically compare the approximation with existing numerical techniques.</description><identifier>ISSN: 0949-2984</identifier><identifier>EISSN: 1432-1122</identifier><identifier>DOI: 10.1007/s00780-024-00550-4</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Approximation ; Credit ; Derivatives ; Economic Theory/Quantitative Economics/Mathematical Methods ; Economics ; Error analysis ; Exact solutions ; Expected values ; Finance ; Fourier transforms ; Insurance ; Management ; Markov analysis ; Mathematical analysis ; Mathematics ; Mathematics and Statistics ; Polynomials ; Power series ; Pricing ; Probability Theory and Stochastic Processes ; Quantitative Finance ; Series expansion ; Statistics for Business ; Stochastic models ; Stochastic processes</subject><ispartof>Finance and stochastics, 2025, Vol.29 (1), p.63-95</ispartof><rights>The Author(s) 2024</rights><rights>Copyright Springer Nature B.V. Jan 2025</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c244t-91156dcca9f598e8cad76b7d17731ed9a6c6257f7aa840e1d3e145e15a3a21aa3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00780-024-00550-4$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00780-024-00550-4$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Zhao, Chenyu</creatorcontrib><creatorcontrib>van Beek, Misha</creatorcontrib><creatorcontrib>Spreij, Peter</creatorcontrib><creatorcontrib>Ba, Makhtar</creatorcontrib><title>Polynomial approximation of discounted moments</title><title>Finance and stochastics</title><addtitle>Finance Stoch</addtitle><description>We introduce an approximation strategy for the discounted moments of a stochastic process that can approximate the true moments for a large class of problems. These moments appear in pricing formulas of financial products such as bonds and credit derivatives. The approximation relies on a high-order power series expansion of the infinitesimal generator and draws parallels with the theory of polynomial processes. We demonstrate applications to bond pricing and credit derivatives. In the special cases that allow an analytical solution, the approximation error decreases to around 10 to 100 times machine precision for higher orders. When no analytical solution exists, we numerically compare the approximation with existing numerical techniques.</description><subject>Approximation</subject><subject>Credit</subject><subject>Derivatives</subject><subject>Economic Theory/Quantitative Economics/Mathematical Methods</subject><subject>Economics</subject><subject>Error analysis</subject><subject>Exact solutions</subject><subject>Expected values</subject><subject>Finance</subject><subject>Fourier transforms</subject><subject>Insurance</subject><subject>Management</subject><subject>Markov analysis</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Polynomials</subject><subject>Power series</subject><subject>Pricing</subject><subject>Probability Theory and Stochastic Processes</subject><subject>Quantitative Finance</subject><subject>Series expansion</subject><subject>Statistics for Business</subject><subject>Stochastic models</subject><subject>Stochastic processes</subject><issn>0949-2984</issn><issn>1432-1122</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kM1LxDAQxYMouK7-A54KnrPO5KNpjrL4BQt60HOISSpdts2atOD-90YrePMyc3nvzZsfIZcIKwRQ17mMBigwQQGkBCqOyAIFZxSRsWOyAC00ZboRp-Qs5y0AMAlyQVbPcXcYYt_ZXWX3-xQ_u96OXRyq2Fa-yy5Owxh81cc-DGM-Jyet3eVw8buX5PXu9mX9QDdP94_rmw11TIiRakRZe-esbqVuQuOsV_Wb8qgUx-C1rV3NpGqVtY2AgJ4HFDKgtNwytJYvydWcWxp9TCGPZhunNJSThpe3RM15I4uKzSqXYs4ptGafSv10MAjmm4uZuZjCxfxwMaKY-GzKRTy8h_QX_Y_rC-vAZTk</recordid><startdate>2025</startdate><enddate>2025</enddate><creator>Zhao, Chenyu</creator><creator>van Beek, Misha</creator><creator>Spreij, Peter</creator><creator>Ba, Makhtar</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope><scope>JQ2</scope></search><sort><creationdate>2025</creationdate><title>Polynomial approximation of discounted moments</title><author>Zhao, Chenyu ; van Beek, Misha ; Spreij, Peter ; Ba, Makhtar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c244t-91156dcca9f598e8cad76b7d17731ed9a6c6257f7aa840e1d3e145e15a3a21aa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Approximation</topic><topic>Credit</topic><topic>Derivatives</topic><topic>Economic Theory/Quantitative Economics/Mathematical Methods</topic><topic>Economics</topic><topic>Error analysis</topic><topic>Exact solutions</topic><topic>Expected values</topic><topic>Finance</topic><topic>Fourier transforms</topic><topic>Insurance</topic><topic>Management</topic><topic>Markov analysis</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Polynomials</topic><topic>Power series</topic><topic>Pricing</topic><topic>Probability Theory and Stochastic Processes</topic><topic>Quantitative Finance</topic><topic>Series expansion</topic><topic>Statistics for Business</topic><topic>Stochastic models</topic><topic>Stochastic processes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Chenyu</creatorcontrib><creatorcontrib>van Beek, Misha</creatorcontrib><creatorcontrib>Spreij, Peter</creatorcontrib><creatorcontrib>Ba, Makhtar</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Finance and stochastics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Chenyu</au><au>van Beek, Misha</au><au>Spreij, Peter</au><au>Ba, Makhtar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Polynomial approximation of discounted moments</atitle><jtitle>Finance and stochastics</jtitle><stitle>Finance Stoch</stitle><date>2025</date><risdate>2025</risdate><volume>29</volume><issue>1</issue><spage>63</spage><epage>95</epage><pages>63-95</pages><issn>0949-2984</issn><eissn>1432-1122</eissn><abstract>We introduce an approximation strategy for the discounted moments of a stochastic process that can approximate the true moments for a large class of problems. These moments appear in pricing formulas of financial products such as bonds and credit derivatives. The approximation relies on a high-order power series expansion of the infinitesimal generator and draws parallels with the theory of polynomial processes. We demonstrate applications to bond pricing and credit derivatives. In the special cases that allow an analytical solution, the approximation error decreases to around 10 to 100 times machine precision for higher orders. When no analytical solution exists, we numerically compare the approximation with existing numerical techniques.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00780-024-00550-4</doi><tpages>33</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0949-2984
ispartof Finance and stochastics, 2025, Vol.29 (1), p.63-95
issn 0949-2984
1432-1122
language eng
recordid cdi_proquest_journals_3143463385
source SpringerLink Journals - AutoHoldings
subjects Approximation
Credit
Derivatives
Economic Theory/Quantitative Economics/Mathematical Methods
Economics
Error analysis
Exact solutions
Expected values
Finance
Fourier transforms
Insurance
Management
Markov analysis
Mathematical analysis
Mathematics
Mathematics and Statistics
Polynomials
Power series
Pricing
Probability Theory and Stochastic Processes
Quantitative Finance
Series expansion
Statistics for Business
Stochastic models
Stochastic processes
title Polynomial approximation of discounted moments
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T15%3A54%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Polynomial%20approximation%20of%20discounted%20moments&rft.jtitle=Finance%20and%20stochastics&rft.au=Zhao,%20Chenyu&rft.date=2025&rft.volume=29&rft.issue=1&rft.spage=63&rft.epage=95&rft.pages=63-95&rft.issn=0949-2984&rft.eissn=1432-1122&rft_id=info:doi/10.1007/s00780-024-00550-4&rft_dat=%3Cproquest_cross%3E3143463385%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3143463385&rft_id=info:pmid/&rfr_iscdi=true