Polynomial approximation of discounted moments
We introduce an approximation strategy for the discounted moments of a stochastic process that can approximate the true moments for a large class of problems. These moments appear in pricing formulas of financial products such as bonds and credit derivatives. The approximation relies on a high-order...
Gespeichert in:
Veröffentlicht in: | Finance and stochastics 2025, Vol.29 (1), p.63-95 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 95 |
---|---|
container_issue | 1 |
container_start_page | 63 |
container_title | Finance and stochastics |
container_volume | 29 |
creator | Zhao, Chenyu van Beek, Misha Spreij, Peter Ba, Makhtar |
description | We introduce an approximation strategy for the discounted moments of a stochastic process that can approximate the true moments for a large class of problems. These moments appear in pricing formulas of financial products such as bonds and credit derivatives. The approximation relies on a high-order power series expansion of the infinitesimal generator and draws parallels with the theory of polynomial processes. We demonstrate applications to bond pricing and credit derivatives. In the special cases that allow an analytical solution, the approximation error decreases to around 10 to 100 times machine precision for higher orders. When no analytical solution exists, we numerically compare the approximation with existing numerical techniques. |
doi_str_mv | 10.1007/s00780-024-00550-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3143463385</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3143463385</sourcerecordid><originalsourceid>FETCH-LOGICAL-c244t-91156dcca9f598e8cad76b7d17731ed9a6c6257f7aa840e1d3e145e15a3a21aa3</originalsourceid><addsrcrecordid>eNp9kM1LxDAQxYMouK7-A54KnrPO5KNpjrL4BQt60HOISSpdts2atOD-90YrePMyc3nvzZsfIZcIKwRQ17mMBigwQQGkBCqOyAIFZxSRsWOyAC00ZboRp-Qs5y0AMAlyQVbPcXcYYt_ZXWX3-xQ_u96OXRyq2Fa-yy5Owxh81cc-DGM-Jyet3eVw8buX5PXu9mX9QDdP94_rmw11TIiRakRZe-esbqVuQuOsV_Wb8qgUx-C1rV3NpGqVtY2AgJ4HFDKgtNwytJYvydWcWxp9TCGPZhunNJSThpe3RM15I4uKzSqXYs4ptGafSv10MAjmm4uZuZjCxfxwMaKY-GzKRTy8h_QX_Y_rC-vAZTk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3143463385</pqid></control><display><type>article</type><title>Polynomial approximation of discounted moments</title><source>SpringerLink Journals - AutoHoldings</source><creator>Zhao, Chenyu ; van Beek, Misha ; Spreij, Peter ; Ba, Makhtar</creator><creatorcontrib>Zhao, Chenyu ; van Beek, Misha ; Spreij, Peter ; Ba, Makhtar</creatorcontrib><description>We introduce an approximation strategy for the discounted moments of a stochastic process that can approximate the true moments for a large class of problems. These moments appear in pricing formulas of financial products such as bonds and credit derivatives. The approximation relies on a high-order power series expansion of the infinitesimal generator and draws parallels with the theory of polynomial processes. We demonstrate applications to bond pricing and credit derivatives. In the special cases that allow an analytical solution, the approximation error decreases to around 10 to 100 times machine precision for higher orders. When no analytical solution exists, we numerically compare the approximation with existing numerical techniques.</description><identifier>ISSN: 0949-2984</identifier><identifier>EISSN: 1432-1122</identifier><identifier>DOI: 10.1007/s00780-024-00550-4</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Approximation ; Credit ; Derivatives ; Economic Theory/Quantitative Economics/Mathematical Methods ; Economics ; Error analysis ; Exact solutions ; Expected values ; Finance ; Fourier transforms ; Insurance ; Management ; Markov analysis ; Mathematical analysis ; Mathematics ; Mathematics and Statistics ; Polynomials ; Power series ; Pricing ; Probability Theory and Stochastic Processes ; Quantitative Finance ; Series expansion ; Statistics for Business ; Stochastic models ; Stochastic processes</subject><ispartof>Finance and stochastics, 2025, Vol.29 (1), p.63-95</ispartof><rights>The Author(s) 2024</rights><rights>Copyright Springer Nature B.V. Jan 2025</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c244t-91156dcca9f598e8cad76b7d17731ed9a6c6257f7aa840e1d3e145e15a3a21aa3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00780-024-00550-4$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00780-024-00550-4$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Zhao, Chenyu</creatorcontrib><creatorcontrib>van Beek, Misha</creatorcontrib><creatorcontrib>Spreij, Peter</creatorcontrib><creatorcontrib>Ba, Makhtar</creatorcontrib><title>Polynomial approximation of discounted moments</title><title>Finance and stochastics</title><addtitle>Finance Stoch</addtitle><description>We introduce an approximation strategy for the discounted moments of a stochastic process that can approximate the true moments for a large class of problems. These moments appear in pricing formulas of financial products such as bonds and credit derivatives. The approximation relies on a high-order power series expansion of the infinitesimal generator and draws parallels with the theory of polynomial processes. We demonstrate applications to bond pricing and credit derivatives. In the special cases that allow an analytical solution, the approximation error decreases to around 10 to 100 times machine precision for higher orders. When no analytical solution exists, we numerically compare the approximation with existing numerical techniques.</description><subject>Approximation</subject><subject>Credit</subject><subject>Derivatives</subject><subject>Economic Theory/Quantitative Economics/Mathematical Methods</subject><subject>Economics</subject><subject>Error analysis</subject><subject>Exact solutions</subject><subject>Expected values</subject><subject>Finance</subject><subject>Fourier transforms</subject><subject>Insurance</subject><subject>Management</subject><subject>Markov analysis</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Polynomials</subject><subject>Power series</subject><subject>Pricing</subject><subject>Probability Theory and Stochastic Processes</subject><subject>Quantitative Finance</subject><subject>Series expansion</subject><subject>Statistics for Business</subject><subject>Stochastic models</subject><subject>Stochastic processes</subject><issn>0949-2984</issn><issn>1432-1122</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kM1LxDAQxYMouK7-A54KnrPO5KNpjrL4BQt60HOISSpdts2atOD-90YrePMyc3nvzZsfIZcIKwRQ17mMBigwQQGkBCqOyAIFZxSRsWOyAC00ZboRp-Qs5y0AMAlyQVbPcXcYYt_ZXWX3-xQ_u96OXRyq2Fa-yy5Owxh81cc-DGM-Jyet3eVw8buX5PXu9mX9QDdP94_rmw11TIiRakRZe-esbqVuQuOsV_Wb8qgUx-C1rV3NpGqVtY2AgJ4HFDKgtNwytJYvydWcWxp9TCGPZhunNJSThpe3RM15I4uKzSqXYs4ptGafSv10MAjmm4uZuZjCxfxwMaKY-GzKRTy8h_QX_Y_rC-vAZTk</recordid><startdate>2025</startdate><enddate>2025</enddate><creator>Zhao, Chenyu</creator><creator>van Beek, Misha</creator><creator>Spreij, Peter</creator><creator>Ba, Makhtar</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope><scope>JQ2</scope></search><sort><creationdate>2025</creationdate><title>Polynomial approximation of discounted moments</title><author>Zhao, Chenyu ; van Beek, Misha ; Spreij, Peter ; Ba, Makhtar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c244t-91156dcca9f598e8cad76b7d17731ed9a6c6257f7aa840e1d3e145e15a3a21aa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Approximation</topic><topic>Credit</topic><topic>Derivatives</topic><topic>Economic Theory/Quantitative Economics/Mathematical Methods</topic><topic>Economics</topic><topic>Error analysis</topic><topic>Exact solutions</topic><topic>Expected values</topic><topic>Finance</topic><topic>Fourier transforms</topic><topic>Insurance</topic><topic>Management</topic><topic>Markov analysis</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Polynomials</topic><topic>Power series</topic><topic>Pricing</topic><topic>Probability Theory and Stochastic Processes</topic><topic>Quantitative Finance</topic><topic>Series expansion</topic><topic>Statistics for Business</topic><topic>Stochastic models</topic><topic>Stochastic processes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Chenyu</creatorcontrib><creatorcontrib>van Beek, Misha</creatorcontrib><creatorcontrib>Spreij, Peter</creatorcontrib><creatorcontrib>Ba, Makhtar</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Finance and stochastics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Chenyu</au><au>van Beek, Misha</au><au>Spreij, Peter</au><au>Ba, Makhtar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Polynomial approximation of discounted moments</atitle><jtitle>Finance and stochastics</jtitle><stitle>Finance Stoch</stitle><date>2025</date><risdate>2025</risdate><volume>29</volume><issue>1</issue><spage>63</spage><epage>95</epage><pages>63-95</pages><issn>0949-2984</issn><eissn>1432-1122</eissn><abstract>We introduce an approximation strategy for the discounted moments of a stochastic process that can approximate the true moments for a large class of problems. These moments appear in pricing formulas of financial products such as bonds and credit derivatives. The approximation relies on a high-order power series expansion of the infinitesimal generator and draws parallels with the theory of polynomial processes. We demonstrate applications to bond pricing and credit derivatives. In the special cases that allow an analytical solution, the approximation error decreases to around 10 to 100 times machine precision for higher orders. When no analytical solution exists, we numerically compare the approximation with existing numerical techniques.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00780-024-00550-4</doi><tpages>33</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0949-2984 |
ispartof | Finance and stochastics, 2025, Vol.29 (1), p.63-95 |
issn | 0949-2984 1432-1122 |
language | eng |
recordid | cdi_proquest_journals_3143463385 |
source | SpringerLink Journals - AutoHoldings |
subjects | Approximation Credit Derivatives Economic Theory/Quantitative Economics/Mathematical Methods Economics Error analysis Exact solutions Expected values Finance Fourier transforms Insurance Management Markov analysis Mathematical analysis Mathematics Mathematics and Statistics Polynomials Power series Pricing Probability Theory and Stochastic Processes Quantitative Finance Series expansion Statistics for Business Stochastic models Stochastic processes |
title | Polynomial approximation of discounted moments |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T15%3A54%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Polynomial%20approximation%20of%20discounted%20moments&rft.jtitle=Finance%20and%20stochastics&rft.au=Zhao,%20Chenyu&rft.date=2025&rft.volume=29&rft.issue=1&rft.spage=63&rft.epage=95&rft.pages=63-95&rft.issn=0949-2984&rft.eissn=1432-1122&rft_id=info:doi/10.1007/s00780-024-00550-4&rft_dat=%3Cproquest_cross%3E3143463385%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3143463385&rft_id=info:pmid/&rfr_iscdi=true |