Commercial CMOS Process for Quantum Computing: Quantum Dots and Charge Sensing in a 22 nm Fully Depleted Silicon-on-Insulator Process

Confining electrons or holes in quantum dots formed in the channel of industry-standard fully depleted silicon-on-insulator CMOS structures is a promising approach to scalable qubit architectures. In this communication, we present measurement results of a commercial nanostructure fabricated using th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-12
Hauptverfasser: Amitonov, S V, Aprà, A, Asker, M, Barry, B, Bashir, I, Bisiaux, P, Blokhina, E, Giounanlis, P, Hanos-Puskai, P, Harkin, M, Kriekouki, I, Leipold, D, Moras, M, Power, C, Samkharadze, N, Sokolov, A, Redmond, D, Rohrbacher, C, X Wu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Amitonov, S V
Aprà, A
Asker, M
Barry, B
Bashir, I
Bisiaux, P
Blokhina, E
Giounanlis, P
Hanos-Puskai, P
Harkin, M
Kriekouki, I
Leipold, D
Moras, M
Power, C
Samkharadze, N
Sokolov, A
Redmond, D
Rohrbacher, C
X Wu
description Confining electrons or holes in quantum dots formed in the channel of industry-standard fully depleted silicon-on-insulator CMOS structures is a promising approach to scalable qubit architectures. In this communication, we present measurement results of a commercial nanostructure fabricated using the GlobalFoundries 22FDX(TM) industrial process. We demonstrate here that quantum dots are formed in the device channel by applying a combination of a back- and gate voltages. We report our results on an effective detuning of the energy levels in the quantum dots by varying the barrier gate voltages in combination with the back-gate voltage. Given the need and importance of scaling to larger numbers of qubits, we demonstrate here the feasibility of single-electron box sensors at the edge of the quantum dot array for effective charge sensing in different operation modes -- sensing charge transitions in a single- and double quantum dots forming the quantum dot array. We also report measurement results demonstrating bias triangle pair formation and precise control over coupled quantum dots with variations in the inter-dot barrier. The reported measurement results demonstrate the ability to control the formation and coupling of multiple quantum dots in a quantum dot array and to sense their charge state via a Single Electron Box sensor in a commercial process for the first time.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3143451193</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3143451193</sourcerecordid><originalsourceid>FETCH-proquest_journals_31434511933</originalsourceid><addsrcrecordid>eNqNjc2KwjAUhYMwoDi-wwXXhTZp_dvWEV3IjNS9hHrVSHpTc5PFPMC892QhroUDB8754BuIkVSqyBallEMxYb7neS5nc1lVaiT-atd16FujLdT77wZ-vGuRGS7OwyFqCrGDxPQxGLquXtPaBQZNZ6hv2l8RGiROABgCDVICdbCJ1v7CGnuLAc_QGGtaR1nKjjhaHZLhafsUHxdtGSfPHovp5utYb7Peu0dEDqe7i57SdVJFqcqqKJZKvUf9A8qDUOg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3143451193</pqid></control><display><type>article</type><title>Commercial CMOS Process for Quantum Computing: Quantum Dots and Charge Sensing in a 22 nm Fully Depleted Silicon-on-Insulator Process</title><source>Free E- Journals</source><creator>Amitonov, S V ; Aprà, A ; Asker, M ; Barry, B ; Bashir, I ; Bisiaux, P ; Blokhina, E ; Giounanlis, P ; Hanos-Puskai, P ; Harkin, M ; Kriekouki, I ; Leipold, D ; Moras, M ; Power, C ; Samkharadze, N ; Sokolov, A ; Redmond, D ; Rohrbacher, C ; X Wu</creator><creatorcontrib>Amitonov, S V ; Aprà, A ; Asker, M ; Barry, B ; Bashir, I ; Bisiaux, P ; Blokhina, E ; Giounanlis, P ; Hanos-Puskai, P ; Harkin, M ; Kriekouki, I ; Leipold, D ; Moras, M ; Power, C ; Samkharadze, N ; Sokolov, A ; Redmond, D ; Rohrbacher, C ; X Wu</creatorcontrib><description>Confining electrons or holes in quantum dots formed in the channel of industry-standard fully depleted silicon-on-insulator CMOS structures is a promising approach to scalable qubit architectures. In this communication, we present measurement results of a commercial nanostructure fabricated using the GlobalFoundries 22FDX(TM) industrial process. We demonstrate here that quantum dots are formed in the device channel by applying a combination of a back- and gate voltages. We report our results on an effective detuning of the energy levels in the quantum dots by varying the barrier gate voltages in combination with the back-gate voltage. Given the need and importance of scaling to larger numbers of qubits, we demonstrate here the feasibility of single-electron box sensors at the edge of the quantum dot array for effective charge sensing in different operation modes -- sensing charge transitions in a single- and double quantum dots forming the quantum dot array. We also report measurement results demonstrating bias triangle pair formation and precise control over coupled quantum dots with variations in the inter-dot barrier. The reported measurement results demonstrate the ability to control the formation and coupling of multiple quantum dots in a quantum dot array and to sense their charge state via a Single Electron Box sensor in a commercial process for the first time.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>CMOS ; Coupled modes ; Depletion ; Electrons ; Energy levels ; Quantum computing ; Quantum dots ; Qubits (quantum computing) ; Sensor arrays ; Silicon ; Single electrons ; SOI (semiconductors)</subject><ispartof>arXiv.org, 2024-12</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Amitonov, S V</creatorcontrib><creatorcontrib>Aprà, A</creatorcontrib><creatorcontrib>Asker, M</creatorcontrib><creatorcontrib>Barry, B</creatorcontrib><creatorcontrib>Bashir, I</creatorcontrib><creatorcontrib>Bisiaux, P</creatorcontrib><creatorcontrib>Blokhina, E</creatorcontrib><creatorcontrib>Giounanlis, P</creatorcontrib><creatorcontrib>Hanos-Puskai, P</creatorcontrib><creatorcontrib>Harkin, M</creatorcontrib><creatorcontrib>Kriekouki, I</creatorcontrib><creatorcontrib>Leipold, D</creatorcontrib><creatorcontrib>Moras, M</creatorcontrib><creatorcontrib>Power, C</creatorcontrib><creatorcontrib>Samkharadze, N</creatorcontrib><creatorcontrib>Sokolov, A</creatorcontrib><creatorcontrib>Redmond, D</creatorcontrib><creatorcontrib>Rohrbacher, C</creatorcontrib><creatorcontrib>X Wu</creatorcontrib><title>Commercial CMOS Process for Quantum Computing: Quantum Dots and Charge Sensing in a 22 nm Fully Depleted Silicon-on-Insulator Process</title><title>arXiv.org</title><description>Confining electrons or holes in quantum dots formed in the channel of industry-standard fully depleted silicon-on-insulator CMOS structures is a promising approach to scalable qubit architectures. In this communication, we present measurement results of a commercial nanostructure fabricated using the GlobalFoundries 22FDX(TM) industrial process. We demonstrate here that quantum dots are formed in the device channel by applying a combination of a back- and gate voltages. We report our results on an effective detuning of the energy levels in the quantum dots by varying the barrier gate voltages in combination with the back-gate voltage. Given the need and importance of scaling to larger numbers of qubits, we demonstrate here the feasibility of single-electron box sensors at the edge of the quantum dot array for effective charge sensing in different operation modes -- sensing charge transitions in a single- and double quantum dots forming the quantum dot array. We also report measurement results demonstrating bias triangle pair formation and precise control over coupled quantum dots with variations in the inter-dot barrier. The reported measurement results demonstrate the ability to control the formation and coupling of multiple quantum dots in a quantum dot array and to sense their charge state via a Single Electron Box sensor in a commercial process for the first time.</description><subject>CMOS</subject><subject>Coupled modes</subject><subject>Depletion</subject><subject>Electrons</subject><subject>Energy levels</subject><subject>Quantum computing</subject><subject>Quantum dots</subject><subject>Qubits (quantum computing)</subject><subject>Sensor arrays</subject><subject>Silicon</subject><subject>Single electrons</subject><subject>SOI (semiconductors)</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNjc2KwjAUhYMwoDi-wwXXhTZp_dvWEV3IjNS9hHrVSHpTc5PFPMC892QhroUDB8754BuIkVSqyBallEMxYb7neS5nc1lVaiT-atd16FujLdT77wZ-vGuRGS7OwyFqCrGDxPQxGLquXtPaBQZNZ6hv2l8RGiROABgCDVICdbCJ1v7CGnuLAc_QGGtaR1nKjjhaHZLhafsUHxdtGSfPHovp5utYb7Peu0dEDqe7i57SdVJFqcqqKJZKvUf9A8qDUOg</recordid><startdate>20241220</startdate><enddate>20241220</enddate><creator>Amitonov, S V</creator><creator>Aprà, A</creator><creator>Asker, M</creator><creator>Barry, B</creator><creator>Bashir, I</creator><creator>Bisiaux, P</creator><creator>Blokhina, E</creator><creator>Giounanlis, P</creator><creator>Hanos-Puskai, P</creator><creator>Harkin, M</creator><creator>Kriekouki, I</creator><creator>Leipold, D</creator><creator>Moras, M</creator><creator>Power, C</creator><creator>Samkharadze, N</creator><creator>Sokolov, A</creator><creator>Redmond, D</creator><creator>Rohrbacher, C</creator><creator>X Wu</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20241220</creationdate><title>Commercial CMOS Process for Quantum Computing: Quantum Dots and Charge Sensing in a 22 nm Fully Depleted Silicon-on-Insulator Process</title><author>Amitonov, S V ; Aprà, A ; Asker, M ; Barry, B ; Bashir, I ; Bisiaux, P ; Blokhina, E ; Giounanlis, P ; Hanos-Puskai, P ; Harkin, M ; Kriekouki, I ; Leipold, D ; Moras, M ; Power, C ; Samkharadze, N ; Sokolov, A ; Redmond, D ; Rohrbacher, C ; X Wu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_31434511933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>CMOS</topic><topic>Coupled modes</topic><topic>Depletion</topic><topic>Electrons</topic><topic>Energy levels</topic><topic>Quantum computing</topic><topic>Quantum dots</topic><topic>Qubits (quantum computing)</topic><topic>Sensor arrays</topic><topic>Silicon</topic><topic>Single electrons</topic><topic>SOI (semiconductors)</topic><toplevel>online_resources</toplevel><creatorcontrib>Amitonov, S V</creatorcontrib><creatorcontrib>Aprà, A</creatorcontrib><creatorcontrib>Asker, M</creatorcontrib><creatorcontrib>Barry, B</creatorcontrib><creatorcontrib>Bashir, I</creatorcontrib><creatorcontrib>Bisiaux, P</creatorcontrib><creatorcontrib>Blokhina, E</creatorcontrib><creatorcontrib>Giounanlis, P</creatorcontrib><creatorcontrib>Hanos-Puskai, P</creatorcontrib><creatorcontrib>Harkin, M</creatorcontrib><creatorcontrib>Kriekouki, I</creatorcontrib><creatorcontrib>Leipold, D</creatorcontrib><creatorcontrib>Moras, M</creatorcontrib><creatorcontrib>Power, C</creatorcontrib><creatorcontrib>Samkharadze, N</creatorcontrib><creatorcontrib>Sokolov, A</creatorcontrib><creatorcontrib>Redmond, D</creatorcontrib><creatorcontrib>Rohrbacher, C</creatorcontrib><creatorcontrib>X Wu</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Amitonov, S V</au><au>Aprà, A</au><au>Asker, M</au><au>Barry, B</au><au>Bashir, I</au><au>Bisiaux, P</au><au>Blokhina, E</au><au>Giounanlis, P</au><au>Hanos-Puskai, P</au><au>Harkin, M</au><au>Kriekouki, I</au><au>Leipold, D</au><au>Moras, M</au><au>Power, C</au><au>Samkharadze, N</au><au>Sokolov, A</au><au>Redmond, D</au><au>Rohrbacher, C</au><au>X Wu</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Commercial CMOS Process for Quantum Computing: Quantum Dots and Charge Sensing in a 22 nm Fully Depleted Silicon-on-Insulator Process</atitle><jtitle>arXiv.org</jtitle><date>2024-12-20</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Confining electrons or holes in quantum dots formed in the channel of industry-standard fully depleted silicon-on-insulator CMOS structures is a promising approach to scalable qubit architectures. In this communication, we present measurement results of a commercial nanostructure fabricated using the GlobalFoundries 22FDX(TM) industrial process. We demonstrate here that quantum dots are formed in the device channel by applying a combination of a back- and gate voltages. We report our results on an effective detuning of the energy levels in the quantum dots by varying the barrier gate voltages in combination with the back-gate voltage. Given the need and importance of scaling to larger numbers of qubits, we demonstrate here the feasibility of single-electron box sensors at the edge of the quantum dot array for effective charge sensing in different operation modes -- sensing charge transitions in a single- and double quantum dots forming the quantum dot array. We also report measurement results demonstrating bias triangle pair formation and precise control over coupled quantum dots with variations in the inter-dot barrier. The reported measurement results demonstrate the ability to control the formation and coupling of multiple quantum dots in a quantum dot array and to sense their charge state via a Single Electron Box sensor in a commercial process for the first time.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-12
issn 2331-8422
language eng
recordid cdi_proquest_journals_3143451193
source Free E- Journals
subjects CMOS
Coupled modes
Depletion
Electrons
Energy levels
Quantum computing
Quantum dots
Qubits (quantum computing)
Sensor arrays
Silicon
Single electrons
SOI (semiconductors)
title Commercial CMOS Process for Quantum Computing: Quantum Dots and Charge Sensing in a 22 nm Fully Depleted Silicon-on-Insulator Process
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T21%3A57%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Commercial%20CMOS%20Process%20for%20Quantum%20Computing:%20Quantum%20Dots%20and%20Charge%20Sensing%20in%20a%2022%20nm%20Fully%20Depleted%20Silicon-on-Insulator%20Process&rft.jtitle=arXiv.org&rft.au=Amitonov,%20S%20V&rft.date=2024-12-20&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3143451193%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3143451193&rft_id=info:pmid/&rfr_iscdi=true