Detection of extended X-ray emission around the PeVatron microquasar V4641 Sgr with XRISM

A recent report on the detection of very-high-energy gamma rays from V4641 Sagittarii (V4641 Sgr) up to ~0.8 peta-electronvolt has made it the second confirmed "PeVatron" microquasar. Here we report on the observation of V4641 Sgr with X-Ray Imaging and Spectroscopy Mission (XRISM) in Sept...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-12
Hauptverfasser: Suzuki, Hiromasa, Tsuji, Naomi, Kanemaru, Yoshiaki, Shidatsu, Megumi, Olivera-Nieto, Laura, Safi-Harb, Samar, Kimura, Shigeo S, de la Fuente, Eduardo, Casanova, Sabrina, Mori, Kaya, Wang, Xiaojie, Kato, Sei, Tateishi, Dai, Uchiyama, Hideki, Tanaka, Takaaki, Uchida, Hiroyuki, Inoue, Shun, Huang, Dezhi, Lemoine-Goumard, Marianne, Miura, Daiki, Ogawa, Shoji, Kobayashi, Shogo B, Done, Chris, Parra, Maxime, María Díaz Trigo, Muñoz-Darias, Teo, Montserrat Armas Padilla, Tomaru, Ryota, Ueda, Yoshihiro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Suzuki, Hiromasa
Tsuji, Naomi
Kanemaru, Yoshiaki
Shidatsu, Megumi
Olivera-Nieto, Laura
Safi-Harb, Samar
Kimura, Shigeo S
de la Fuente, Eduardo
Casanova, Sabrina
Mori, Kaya
Wang, Xiaojie
Kato, Sei
Tateishi, Dai
Uchiyama, Hideki
Tanaka, Takaaki
Uchida, Hiroyuki
Inoue, Shun
Huang, Dezhi
Lemoine-Goumard, Marianne
Miura, Daiki
Ogawa, Shoji
Kobayashi, Shogo B
Done, Chris
Parra, Maxime
María Díaz Trigo
Muñoz-Darias, Teo
Montserrat Armas Padilla
Tomaru, Ryota
Ueda, Yoshihiro
description A recent report on the detection of very-high-energy gamma rays from V4641 Sagittarii (V4641 Sgr) up to ~0.8 peta-electronvolt has made it the second confirmed "PeVatron" microquasar. Here we report on the observation of V4641 Sgr with X-Ray Imaging and Spectroscopy Mission (XRISM) in September 2024. Thanks to the large field of view and low background, the CCD imager Xtend successfully detected for the first time X-ray extended emission around V4641 Sgr with a significance of > 4.5 sigma and > 10 sigma based on our imaging and spectral analysis, respectively. The spatial extent is estimated to have a radius of \(7 \pm 3\) arcmin (\(13 \pm 5\) pc at a distance of 6.2 kpc) assuming a Gaussian-like radial distribution, which suggests that the particle acceleration site is within ~10 pc of the microquasar. If the X-ray morphology traces the diffusion of accelerated electrons, this spatial extent can be explained by either an enhanced magnetic field (~80 uG) or a suppressed diffusion coefficient (~\(10^{27}\) cm\(^2\) s\(^{-1}\) at 100 TeV). The integrated X-ray flux, (4-6)\(\times 10^{-12}\) erg s\(^{-1}\) cm\(^{-2}\) (2-10 keV), would require a magnetic field strength higher than the galactic mean (> 8 uG) if the diffuse X-ray emission originates from synchrotron radiation and the gamma-ray emission is predominantly hadronic. If the X-rays are of thermal origin, the measured extension, temperature, and plasma density can be explained by a jet with a luminosity of ~\(2\times 10^{39}\) erg s\(^{-1}\), which is comparable to the Eddington luminosity of this system.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3143450951</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3143450951</sourcerecordid><originalsourceid>FETCH-proquest_journals_31434509513</originalsourceid><addsrcrecordid>eNqNi8sKgkAYRocgSMp3-KG1oHOxWnehFkFkiK1k0N9U0qmZkertU-gBWh34zndGxKGMBd6SUzohrjG17_s0XFAhmEOuG7SY2Uq1oArAt8U2xxwST8sPYFMZMyipVdfmYEuEE8bS6n5rqkyrZyeN1BDzkAcQ3TS8KltCcj5ExxkZF_Ju0P1xSua77WW99x5Dhsamtep026uUBZxx4a9EwP57fQFU7EDh</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3143450951</pqid></control><display><type>article</type><title>Detection of extended X-ray emission around the PeVatron microquasar V4641 Sgr with XRISM</title><source>Free E- Journals</source><creator>Suzuki, Hiromasa ; Tsuji, Naomi ; Kanemaru, Yoshiaki ; Shidatsu, Megumi ; Olivera-Nieto, Laura ; Safi-Harb, Samar ; Kimura, Shigeo S ; de la Fuente, Eduardo ; Casanova, Sabrina ; Mori, Kaya ; Wang, Xiaojie ; Kato, Sei ; Tateishi, Dai ; Uchiyama, Hideki ; Tanaka, Takaaki ; Uchida, Hiroyuki ; Inoue, Shun ; Huang, Dezhi ; Lemoine-Goumard, Marianne ; Miura, Daiki ; Ogawa, Shoji ; Kobayashi, Shogo B ; Done, Chris ; Parra, Maxime ; María Díaz Trigo ; Muñoz-Darias, Teo ; Montserrat Armas Padilla ; Tomaru, Ryota ; Ueda, Yoshihiro</creator><creatorcontrib>Suzuki, Hiromasa ; Tsuji, Naomi ; Kanemaru, Yoshiaki ; Shidatsu, Megumi ; Olivera-Nieto, Laura ; Safi-Harb, Samar ; Kimura, Shigeo S ; de la Fuente, Eduardo ; Casanova, Sabrina ; Mori, Kaya ; Wang, Xiaojie ; Kato, Sei ; Tateishi, Dai ; Uchiyama, Hideki ; Tanaka, Takaaki ; Uchida, Hiroyuki ; Inoue, Shun ; Huang, Dezhi ; Lemoine-Goumard, Marianne ; Miura, Daiki ; Ogawa, Shoji ; Kobayashi, Shogo B ; Done, Chris ; Parra, Maxime ; María Díaz Trigo ; Muñoz-Darias, Teo ; Montserrat Armas Padilla ; Tomaru, Ryota ; Ueda, Yoshihiro</creatorcontrib><description>A recent report on the detection of very-high-energy gamma rays from V4641 Sagittarii (V4641 Sgr) up to ~0.8 peta-electronvolt has made it the second confirmed "PeVatron" microquasar. Here we report on the observation of V4641 Sgr with X-Ray Imaging and Spectroscopy Mission (XRISM) in September 2024. Thanks to the large field of view and low background, the CCD imager Xtend successfully detected for the first time X-ray extended emission around V4641 Sgr with a significance of &gt; 4.5 sigma and &gt; 10 sigma based on our imaging and spectral analysis, respectively. The spatial extent is estimated to have a radius of \(7 \pm 3\) arcmin (\(13 \pm 5\) pc at a distance of 6.2 kpc) assuming a Gaussian-like radial distribution, which suggests that the particle acceleration site is within ~10 pc of the microquasar. If the X-ray morphology traces the diffusion of accelerated electrons, this spatial extent can be explained by either an enhanced magnetic field (~80 uG) or a suppressed diffusion coefficient (~\(10^{27}\) cm\(^2\) s\(^{-1}\) at 100 TeV). The integrated X-ray flux, (4-6)\(\times 10^{-12}\) erg s\(^{-1}\) cm\(^{-2}\) (2-10 keV), would require a magnetic field strength higher than the galactic mean (&gt; 8 uG) if the diffuse X-ray emission originates from synchrotron radiation and the gamma-ray emission is predominantly hadronic. If the X-rays are of thermal origin, the measured extension, temperature, and plasma density can be explained by a jet with a luminosity of ~\(2\times 10^{39}\) erg s\(^{-1}\), which is comparable to the Eddington luminosity of this system.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Diffusion coefficient ; Emission ; Field of view ; Field strength ; Gamma emission ; Gamma rays ; Luminosity ; Magnetic fields ; Microquasars ; Normal distribution ; Particle acceleration ; Plasma density ; Radial distribution ; Spatial analysis ; Spectrum analysis ; Synchrotron radiation ; X ray imagery ; X-rays</subject><ispartof>arXiv.org, 2024-12</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Suzuki, Hiromasa</creatorcontrib><creatorcontrib>Tsuji, Naomi</creatorcontrib><creatorcontrib>Kanemaru, Yoshiaki</creatorcontrib><creatorcontrib>Shidatsu, Megumi</creatorcontrib><creatorcontrib>Olivera-Nieto, Laura</creatorcontrib><creatorcontrib>Safi-Harb, Samar</creatorcontrib><creatorcontrib>Kimura, Shigeo S</creatorcontrib><creatorcontrib>de la Fuente, Eduardo</creatorcontrib><creatorcontrib>Casanova, Sabrina</creatorcontrib><creatorcontrib>Mori, Kaya</creatorcontrib><creatorcontrib>Wang, Xiaojie</creatorcontrib><creatorcontrib>Kato, Sei</creatorcontrib><creatorcontrib>Tateishi, Dai</creatorcontrib><creatorcontrib>Uchiyama, Hideki</creatorcontrib><creatorcontrib>Tanaka, Takaaki</creatorcontrib><creatorcontrib>Uchida, Hiroyuki</creatorcontrib><creatorcontrib>Inoue, Shun</creatorcontrib><creatorcontrib>Huang, Dezhi</creatorcontrib><creatorcontrib>Lemoine-Goumard, Marianne</creatorcontrib><creatorcontrib>Miura, Daiki</creatorcontrib><creatorcontrib>Ogawa, Shoji</creatorcontrib><creatorcontrib>Kobayashi, Shogo B</creatorcontrib><creatorcontrib>Done, Chris</creatorcontrib><creatorcontrib>Parra, Maxime</creatorcontrib><creatorcontrib>María Díaz Trigo</creatorcontrib><creatorcontrib>Muñoz-Darias, Teo</creatorcontrib><creatorcontrib>Montserrat Armas Padilla</creatorcontrib><creatorcontrib>Tomaru, Ryota</creatorcontrib><creatorcontrib>Ueda, Yoshihiro</creatorcontrib><title>Detection of extended X-ray emission around the PeVatron microquasar V4641 Sgr with XRISM</title><title>arXiv.org</title><description>A recent report on the detection of very-high-energy gamma rays from V4641 Sagittarii (V4641 Sgr) up to ~0.8 peta-electronvolt has made it the second confirmed "PeVatron" microquasar. Here we report on the observation of V4641 Sgr with X-Ray Imaging and Spectroscopy Mission (XRISM) in September 2024. Thanks to the large field of view and low background, the CCD imager Xtend successfully detected for the first time X-ray extended emission around V4641 Sgr with a significance of &gt; 4.5 sigma and &gt; 10 sigma based on our imaging and spectral analysis, respectively. The spatial extent is estimated to have a radius of \(7 \pm 3\) arcmin (\(13 \pm 5\) pc at a distance of 6.2 kpc) assuming a Gaussian-like radial distribution, which suggests that the particle acceleration site is within ~10 pc of the microquasar. If the X-ray morphology traces the diffusion of accelerated electrons, this spatial extent can be explained by either an enhanced magnetic field (~80 uG) or a suppressed diffusion coefficient (~\(10^{27}\) cm\(^2\) s\(^{-1}\) at 100 TeV). The integrated X-ray flux, (4-6)\(\times 10^{-12}\) erg s\(^{-1}\) cm\(^{-2}\) (2-10 keV), would require a magnetic field strength higher than the galactic mean (&gt; 8 uG) if the diffuse X-ray emission originates from synchrotron radiation and the gamma-ray emission is predominantly hadronic. If the X-rays are of thermal origin, the measured extension, temperature, and plasma density can be explained by a jet with a luminosity of ~\(2\times 10^{39}\) erg s\(^{-1}\), which is comparable to the Eddington luminosity of this system.</description><subject>Diffusion coefficient</subject><subject>Emission</subject><subject>Field of view</subject><subject>Field strength</subject><subject>Gamma emission</subject><subject>Gamma rays</subject><subject>Luminosity</subject><subject>Magnetic fields</subject><subject>Microquasars</subject><subject>Normal distribution</subject><subject>Particle acceleration</subject><subject>Plasma density</subject><subject>Radial distribution</subject><subject>Spatial analysis</subject><subject>Spectrum analysis</subject><subject>Synchrotron radiation</subject><subject>X ray imagery</subject><subject>X-rays</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNi8sKgkAYRocgSMp3-KG1oHOxWnehFkFkiK1k0N9U0qmZkertU-gBWh34zndGxKGMBd6SUzohrjG17_s0XFAhmEOuG7SY2Uq1oArAt8U2xxwST8sPYFMZMyipVdfmYEuEE8bS6n5rqkyrZyeN1BDzkAcQ3TS8KltCcj5ExxkZF_Ju0P1xSua77WW99x5Dhsamtep026uUBZxx4a9EwP57fQFU7EDh</recordid><startdate>20241211</startdate><enddate>20241211</enddate><creator>Suzuki, Hiromasa</creator><creator>Tsuji, Naomi</creator><creator>Kanemaru, Yoshiaki</creator><creator>Shidatsu, Megumi</creator><creator>Olivera-Nieto, Laura</creator><creator>Safi-Harb, Samar</creator><creator>Kimura, Shigeo S</creator><creator>de la Fuente, Eduardo</creator><creator>Casanova, Sabrina</creator><creator>Mori, Kaya</creator><creator>Wang, Xiaojie</creator><creator>Kato, Sei</creator><creator>Tateishi, Dai</creator><creator>Uchiyama, Hideki</creator><creator>Tanaka, Takaaki</creator><creator>Uchida, Hiroyuki</creator><creator>Inoue, Shun</creator><creator>Huang, Dezhi</creator><creator>Lemoine-Goumard, Marianne</creator><creator>Miura, Daiki</creator><creator>Ogawa, Shoji</creator><creator>Kobayashi, Shogo B</creator><creator>Done, Chris</creator><creator>Parra, Maxime</creator><creator>María Díaz Trigo</creator><creator>Muñoz-Darias, Teo</creator><creator>Montserrat Armas Padilla</creator><creator>Tomaru, Ryota</creator><creator>Ueda, Yoshihiro</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20241211</creationdate><title>Detection of extended X-ray emission around the PeVatron microquasar V4641 Sgr with XRISM</title><author>Suzuki, Hiromasa ; Tsuji, Naomi ; Kanemaru, Yoshiaki ; Shidatsu, Megumi ; Olivera-Nieto, Laura ; Safi-Harb, Samar ; Kimura, Shigeo S ; de la Fuente, Eduardo ; Casanova, Sabrina ; Mori, Kaya ; Wang, Xiaojie ; Kato, Sei ; Tateishi, Dai ; Uchiyama, Hideki ; Tanaka, Takaaki ; Uchida, Hiroyuki ; Inoue, Shun ; Huang, Dezhi ; Lemoine-Goumard, Marianne ; Miura, Daiki ; Ogawa, Shoji ; Kobayashi, Shogo B ; Done, Chris ; Parra, Maxime ; María Díaz Trigo ; Muñoz-Darias, Teo ; Montserrat Armas Padilla ; Tomaru, Ryota ; Ueda, Yoshihiro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_31434509513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Diffusion coefficient</topic><topic>Emission</topic><topic>Field of view</topic><topic>Field strength</topic><topic>Gamma emission</topic><topic>Gamma rays</topic><topic>Luminosity</topic><topic>Magnetic fields</topic><topic>Microquasars</topic><topic>Normal distribution</topic><topic>Particle acceleration</topic><topic>Plasma density</topic><topic>Radial distribution</topic><topic>Spatial analysis</topic><topic>Spectrum analysis</topic><topic>Synchrotron radiation</topic><topic>X ray imagery</topic><topic>X-rays</topic><toplevel>online_resources</toplevel><creatorcontrib>Suzuki, Hiromasa</creatorcontrib><creatorcontrib>Tsuji, Naomi</creatorcontrib><creatorcontrib>Kanemaru, Yoshiaki</creatorcontrib><creatorcontrib>Shidatsu, Megumi</creatorcontrib><creatorcontrib>Olivera-Nieto, Laura</creatorcontrib><creatorcontrib>Safi-Harb, Samar</creatorcontrib><creatorcontrib>Kimura, Shigeo S</creatorcontrib><creatorcontrib>de la Fuente, Eduardo</creatorcontrib><creatorcontrib>Casanova, Sabrina</creatorcontrib><creatorcontrib>Mori, Kaya</creatorcontrib><creatorcontrib>Wang, Xiaojie</creatorcontrib><creatorcontrib>Kato, Sei</creatorcontrib><creatorcontrib>Tateishi, Dai</creatorcontrib><creatorcontrib>Uchiyama, Hideki</creatorcontrib><creatorcontrib>Tanaka, Takaaki</creatorcontrib><creatorcontrib>Uchida, Hiroyuki</creatorcontrib><creatorcontrib>Inoue, Shun</creatorcontrib><creatorcontrib>Huang, Dezhi</creatorcontrib><creatorcontrib>Lemoine-Goumard, Marianne</creatorcontrib><creatorcontrib>Miura, Daiki</creatorcontrib><creatorcontrib>Ogawa, Shoji</creatorcontrib><creatorcontrib>Kobayashi, Shogo B</creatorcontrib><creatorcontrib>Done, Chris</creatorcontrib><creatorcontrib>Parra, Maxime</creatorcontrib><creatorcontrib>María Díaz Trigo</creatorcontrib><creatorcontrib>Muñoz-Darias, Teo</creatorcontrib><creatorcontrib>Montserrat Armas Padilla</creatorcontrib><creatorcontrib>Tomaru, Ryota</creatorcontrib><creatorcontrib>Ueda, Yoshihiro</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Suzuki, Hiromasa</au><au>Tsuji, Naomi</au><au>Kanemaru, Yoshiaki</au><au>Shidatsu, Megumi</au><au>Olivera-Nieto, Laura</au><au>Safi-Harb, Samar</au><au>Kimura, Shigeo S</au><au>de la Fuente, Eduardo</au><au>Casanova, Sabrina</au><au>Mori, Kaya</au><au>Wang, Xiaojie</au><au>Kato, Sei</au><au>Tateishi, Dai</au><au>Uchiyama, Hideki</au><au>Tanaka, Takaaki</au><au>Uchida, Hiroyuki</au><au>Inoue, Shun</au><au>Huang, Dezhi</au><au>Lemoine-Goumard, Marianne</au><au>Miura, Daiki</au><au>Ogawa, Shoji</au><au>Kobayashi, Shogo B</au><au>Done, Chris</au><au>Parra, Maxime</au><au>María Díaz Trigo</au><au>Muñoz-Darias, Teo</au><au>Montserrat Armas Padilla</au><au>Tomaru, Ryota</au><au>Ueda, Yoshihiro</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Detection of extended X-ray emission around the PeVatron microquasar V4641 Sgr with XRISM</atitle><jtitle>arXiv.org</jtitle><date>2024-12-11</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>A recent report on the detection of very-high-energy gamma rays from V4641 Sagittarii (V4641 Sgr) up to ~0.8 peta-electronvolt has made it the second confirmed "PeVatron" microquasar. Here we report on the observation of V4641 Sgr with X-Ray Imaging and Spectroscopy Mission (XRISM) in September 2024. Thanks to the large field of view and low background, the CCD imager Xtend successfully detected for the first time X-ray extended emission around V4641 Sgr with a significance of &gt; 4.5 sigma and &gt; 10 sigma based on our imaging and spectral analysis, respectively. The spatial extent is estimated to have a radius of \(7 \pm 3\) arcmin (\(13 \pm 5\) pc at a distance of 6.2 kpc) assuming a Gaussian-like radial distribution, which suggests that the particle acceleration site is within ~10 pc of the microquasar. If the X-ray morphology traces the diffusion of accelerated electrons, this spatial extent can be explained by either an enhanced magnetic field (~80 uG) or a suppressed diffusion coefficient (~\(10^{27}\) cm\(^2\) s\(^{-1}\) at 100 TeV). The integrated X-ray flux, (4-6)\(\times 10^{-12}\) erg s\(^{-1}\) cm\(^{-2}\) (2-10 keV), would require a magnetic field strength higher than the galactic mean (&gt; 8 uG) if the diffuse X-ray emission originates from synchrotron radiation and the gamma-ray emission is predominantly hadronic. If the X-rays are of thermal origin, the measured extension, temperature, and plasma density can be explained by a jet with a luminosity of ~\(2\times 10^{39}\) erg s\(^{-1}\), which is comparable to the Eddington luminosity of this system.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-12
issn 2331-8422
language eng
recordid cdi_proquest_journals_3143450951
source Free E- Journals
subjects Diffusion coefficient
Emission
Field of view
Field strength
Gamma emission
Gamma rays
Luminosity
Magnetic fields
Microquasars
Normal distribution
Particle acceleration
Plasma density
Radial distribution
Spatial analysis
Spectrum analysis
Synchrotron radiation
X ray imagery
X-rays
title Detection of extended X-ray emission around the PeVatron microquasar V4641 Sgr with XRISM
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T21%3A54%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Detection%20of%20extended%20X-ray%20emission%20around%20the%20PeVatron%20microquasar%20V4641%20Sgr%20with%20XRISM&rft.jtitle=arXiv.org&rft.au=Suzuki,%20Hiromasa&rft.date=2024-12-11&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3143450951%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3143450951&rft_id=info:pmid/&rfr_iscdi=true