(q\)-deformation of chromatic polynomials and graphical arrangements

We first observe a mysterious similarity between the braid arrangement and the arrangement of all hyperplanes in a vector space over the finite field \(\mathbb{F}_q\). These two arrangements are defined by the determinants of the Vandermonde and the Moore matrix, respectively. These two matrices are...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-12
Hauptverfasser: Nian, Tongyu, Tsujie, Shuhei, Uchiumi, Ryo, Yoshinaga, Masahiko
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Nian, Tongyu
Tsujie, Shuhei
Uchiumi, Ryo
Yoshinaga, Masahiko
description We first observe a mysterious similarity between the braid arrangement and the arrangement of all hyperplanes in a vector space over the finite field \(\mathbb{F}_q\). These two arrangements are defined by the determinants of the Vandermonde and the Moore matrix, respectively. These two matrices are transformed to each other by replacing a natural number \(n\) with \(q^n\) (\(q\)-deformation). In this paper, we introduce the notion of ``\(q\)-deformation of graphical arrangements'' as certain subarrangements of the arrangement of all hyperplanes over \(\mathbb{F}_q\). This new class of arrangements extends the relationship between the Vandermonde and Moore matrices to graphical arrangements. We show that many invariants of the ``\(q\)-deformation'' behave as ``\(q\)-deformation'' of invariants of the graphical arrangements. Such invariants include the characteristic (chromatic) polynomial, the Stirling number of the second kind, freeness, exponents, basis of logarithmic vector fields, etc.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3143450910</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3143450910</sourcerecordid><originalsourceid>FETCH-proquest_journals_31434509103</originalsourceid><addsrcrecordid>eNqNiksKwjAUAIMgWLR3CLjRRSFNWj9rP3gAl0J5pEk_tHntS7rw9lbwAK6GYWbBIqlUmpwyKVcs9r4VQsjDUea5ith1N772SWksUg-hQcfRcl0Tfk3zAbu3w76BznNwJa8IhrrR0HEgAleZ3rjgN2xp58PEP67Z9n57Xh7JQDhOxoeixYncnAqVZirLxTkV6r_rA1OZOtM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3143450910</pqid></control><display><type>article</type><title>(q\)-deformation of chromatic polynomials and graphical arrangements</title><source>Free E- Journals</source><creator>Nian, Tongyu ; Tsujie, Shuhei ; Uchiumi, Ryo ; Yoshinaga, Masahiko</creator><creatorcontrib>Nian, Tongyu ; Tsujie, Shuhei ; Uchiumi, Ryo ; Yoshinaga, Masahiko</creatorcontrib><description>We first observe a mysterious similarity between the braid arrangement and the arrangement of all hyperplanes in a vector space over the finite field \(\mathbb{F}_q\). These two arrangements are defined by the determinants of the Vandermonde and the Moore matrix, respectively. These two matrices are transformed to each other by replacing a natural number \(n\) with \(q^n\) (\(q\)-deformation). In this paper, we introduce the notion of ``\(q\)-deformation of graphical arrangements'' as certain subarrangements of the arrangement of all hyperplanes over \(\mathbb{F}_q\). This new class of arrangements extends the relationship between the Vandermonde and Moore matrices to graphical arrangements. We show that many invariants of the ``\(q\)-deformation'' behave as ``\(q\)-deformation'' of invariants of the graphical arrangements. Such invariants include the characteristic (chromatic) polynomial, the Stirling number of the second kind, freeness, exponents, basis of logarithmic vector fields, etc.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Combinatorial analysis ; Deformation ; Determinants ; Fields (mathematics) ; Hyperplanes ; Invariants ; Polynomials ; Vector spaces</subject><ispartof>arXiv.org, 2024-12</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Nian, Tongyu</creatorcontrib><creatorcontrib>Tsujie, Shuhei</creatorcontrib><creatorcontrib>Uchiumi, Ryo</creatorcontrib><creatorcontrib>Yoshinaga, Masahiko</creatorcontrib><title>(q\)-deformation of chromatic polynomials and graphical arrangements</title><title>arXiv.org</title><description>We first observe a mysterious similarity between the braid arrangement and the arrangement of all hyperplanes in a vector space over the finite field \(\mathbb{F}_q\). These two arrangements are defined by the determinants of the Vandermonde and the Moore matrix, respectively. These two matrices are transformed to each other by replacing a natural number \(n\) with \(q^n\) (\(q\)-deformation). In this paper, we introduce the notion of ``\(q\)-deformation of graphical arrangements'' as certain subarrangements of the arrangement of all hyperplanes over \(\mathbb{F}_q\). This new class of arrangements extends the relationship between the Vandermonde and Moore matrices to graphical arrangements. We show that many invariants of the ``\(q\)-deformation'' behave as ``\(q\)-deformation'' of invariants of the graphical arrangements. Such invariants include the characteristic (chromatic) polynomial, the Stirling number of the second kind, freeness, exponents, basis of logarithmic vector fields, etc.</description><subject>Combinatorial analysis</subject><subject>Deformation</subject><subject>Determinants</subject><subject>Fields (mathematics)</subject><subject>Hyperplanes</subject><subject>Invariants</subject><subject>Polynomials</subject><subject>Vector spaces</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNiksKwjAUAIMgWLR3CLjRRSFNWj9rP3gAl0J5pEk_tHntS7rw9lbwAK6GYWbBIqlUmpwyKVcs9r4VQsjDUea5ith1N772SWksUg-hQcfRcl0Tfk3zAbu3w76BznNwJa8IhrrR0HEgAleZ3rjgN2xp58PEP67Z9n57Xh7JQDhOxoeixYncnAqVZirLxTkV6r_rA1OZOtM</recordid><startdate>20241211</startdate><enddate>20241211</enddate><creator>Nian, Tongyu</creator><creator>Tsujie, Shuhei</creator><creator>Uchiumi, Ryo</creator><creator>Yoshinaga, Masahiko</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20241211</creationdate><title>(q\)-deformation of chromatic polynomials and graphical arrangements</title><author>Nian, Tongyu ; Tsujie, Shuhei ; Uchiumi, Ryo ; Yoshinaga, Masahiko</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_31434509103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Combinatorial analysis</topic><topic>Deformation</topic><topic>Determinants</topic><topic>Fields (mathematics)</topic><topic>Hyperplanes</topic><topic>Invariants</topic><topic>Polynomials</topic><topic>Vector spaces</topic><toplevel>online_resources</toplevel><creatorcontrib>Nian, Tongyu</creatorcontrib><creatorcontrib>Tsujie, Shuhei</creatorcontrib><creatorcontrib>Uchiumi, Ryo</creatorcontrib><creatorcontrib>Yoshinaga, Masahiko</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nian, Tongyu</au><au>Tsujie, Shuhei</au><au>Uchiumi, Ryo</au><au>Yoshinaga, Masahiko</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>(q\)-deformation of chromatic polynomials and graphical arrangements</atitle><jtitle>arXiv.org</jtitle><date>2024-12-11</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>We first observe a mysterious similarity between the braid arrangement and the arrangement of all hyperplanes in a vector space over the finite field \(\mathbb{F}_q\). These two arrangements are defined by the determinants of the Vandermonde and the Moore matrix, respectively. These two matrices are transformed to each other by replacing a natural number \(n\) with \(q^n\) (\(q\)-deformation). In this paper, we introduce the notion of ``\(q\)-deformation of graphical arrangements'' as certain subarrangements of the arrangement of all hyperplanes over \(\mathbb{F}_q\). This new class of arrangements extends the relationship between the Vandermonde and Moore matrices to graphical arrangements. We show that many invariants of the ``\(q\)-deformation'' behave as ``\(q\)-deformation'' of invariants of the graphical arrangements. Such invariants include the characteristic (chromatic) polynomial, the Stirling number of the second kind, freeness, exponents, basis of logarithmic vector fields, etc.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-12
issn 2331-8422
language eng
recordid cdi_proquest_journals_3143450910
source Free E- Journals
subjects Combinatorial analysis
Deformation
Determinants
Fields (mathematics)
Hyperplanes
Invariants
Polynomials
Vector spaces
title (q\)-deformation of chromatic polynomials and graphical arrangements
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T00%3A06%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=(q%5C)-deformation%20of%20chromatic%20polynomials%20and%20graphical%20arrangements&rft.jtitle=arXiv.org&rft.au=Nian,%20Tongyu&rft.date=2024-12-11&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3143450910%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3143450910&rft_id=info:pmid/&rfr_iscdi=true