Electrothermal enhancement of β-(AlxGa1−x)2O3/Ga2O3 heterostructure field-effect transistors via back-end-of-line sputter-deposited AlN layer

The electrothermal device performance of β-(Al0.21Ga0.79)2O3/Ga2O3 heterostructure field-effect transistors (HFETs) was enhanced by incorporating a 400 nm thick AlN capping layer via back-end-of-line room-temperature reactive sputter deposition. The AlN-capped HFETs demonstrated DC power densities &...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied physics 2024-12, Vol.136 (22)
Hauptverfasser: Lundh, James Spencer, Cress, Cory, Jacobs, Alan G., Cheng, Zhe, Masten, Hannah N., Spencer, Joseph A., Sasaki, Kohei, Gallagher, James, Koehler, Andrew D., Konishi, Keita, Graham, Samuel, Kuramata, Akito, Anderson, Travis J., Tadjer, Marko J., Hobart, Karl D., Mastro, Michael A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 22
container_start_page
container_title Journal of applied physics
container_volume 136
creator Lundh, James Spencer
Cress, Cory
Jacobs, Alan G.
Cheng, Zhe
Masten, Hannah N.
Spencer, Joseph A.
Sasaki, Kohei
Gallagher, James
Koehler, Andrew D.
Konishi, Keita
Graham, Samuel
Kuramata, Akito
Anderson, Travis J.
Tadjer, Marko J.
Hobart, Karl D.
Mastro, Michael A.
description The electrothermal device performance of β-(Al0.21Ga0.79)2O3/Ga2O3 heterostructure field-effect transistors (HFETs) was enhanced by incorporating a 400 nm thick AlN capping layer via back-end-of-line room-temperature reactive sputter deposition. The AlN-capped HFETs demonstrated DC power densities >5 W/mm, higher than any previous report on lateral β-Ga2O3 transistors on native substrates. The breakdown voltage (VB) of the uncapped HFETs was 569 ± 250 V with a maximum VB of 947 V. For the AlN-capped HFETs, VB increased to 1210 ± 351 V with a maximum VB of 1868 V. The AlN-capped HFETs demonstrated a 27% reduction in device-level thermal resistance (RTH) as measured from the gate electrode. The combined use of electrical and thermal simulation helped elucidate the coupled electrothermal contributions to the measured reduction in the temperature rise for the AlN-capped HFETs. Although the measured AlN film thermal conductivity (13.3 ± 1.3 W/mK) was comparable to that of bulk β-Ga2O3, the capping layer still reduced the simulated peak channel temperature rise by ∼4% due to heat spreading only. Electrical simulation revealed that electric field spreading was an additional mechanism that contributed to the majority of the simulated 18% reduction in the peak channel temperature rise through delocalization and redistribution of the heat generation in the channel. Thermal modeling was used to evaluate further improvements in thermal performance that can be realized by optimizing the sputter deposition process to achieve thicker and higher thermal conductivity AlN.
doi_str_mv 10.1063/5.0225896
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3143433930</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3143433930</sourcerecordid><originalsourceid>FETCH-LOGICAL-c182t-9932f6e6a446c5266e94ac90e331d70fcb5bd93f29ad4cec282d3257006a9fd3</originalsourceid><addsrcrecordid>eNp9kD1OAzEUhC0EEiFQcANLNATJiX_2z2UUhYAUkSb9yrGflQ2bdbC9KLkBJeIoHIRDcBIWhZrmTfPNjN4gdM3okNFMjNIh5TwtZHaCeowWkuRpSk9Rj1LOSCFzeY4uQthQylghZA-9T2vQ0bu4Br9VNYZmrRoNW2gidhZ_fZLbcb2fKfb99rEf8IUYzVR38RoieBeib3VsPWBbQW0IWNul4ehVE6oQnQ_4tVJ4pfQzgcYQZ0ldNYDDro2dnxjYuVBFMHhcP-FaHcBfojOr6gBXf9pHy_vpcvJA5ovZ42Q8J5oVPBIpBbcZZCpJMp3yLAOZKC0pCMFMTq1epSsjheVSmUSD5gU3gqc5pZmS1og-ujnG7rx7aSHEcuNa33SNpWCJSISQgnbU4Ejp7tfgwZY7X22VP5SMlr97l2n5t3fH3h3ZoKuoYuWaf-Aff1OCcw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3143433930</pqid></control><display><type>article</type><title>Electrothermal enhancement of β-(AlxGa1−x)2O3/Ga2O3 heterostructure field-effect transistors via back-end-of-line sputter-deposited AlN layer</title><source>Alma/SFX Local Collection</source><creator>Lundh, James Spencer ; Cress, Cory ; Jacobs, Alan G. ; Cheng, Zhe ; Masten, Hannah N. ; Spencer, Joseph A. ; Sasaki, Kohei ; Gallagher, James ; Koehler, Andrew D. ; Konishi, Keita ; Graham, Samuel ; Kuramata, Akito ; Anderson, Travis J. ; Tadjer, Marko J. ; Hobart, Karl D. ; Mastro, Michael A.</creator><creatorcontrib>Lundh, James Spencer ; Cress, Cory ; Jacobs, Alan G. ; Cheng, Zhe ; Masten, Hannah N. ; Spencer, Joseph A. ; Sasaki, Kohei ; Gallagher, James ; Koehler, Andrew D. ; Konishi, Keita ; Graham, Samuel ; Kuramata, Akito ; Anderson, Travis J. ; Tadjer, Marko J. ; Hobart, Karl D. ; Mastro, Michael A.</creatorcontrib><description>The electrothermal device performance of β-(Al0.21Ga0.79)2O3/Ga2O3 heterostructure field-effect transistors (HFETs) was enhanced by incorporating a 400 nm thick AlN capping layer via back-end-of-line room-temperature reactive sputter deposition. The AlN-capped HFETs demonstrated DC power densities &gt;5 W/mm, higher than any previous report on lateral β-Ga2O3 transistors on native substrates. The breakdown voltage (VB) of the uncapped HFETs was 569 ± 250 V with a maximum VB of 947 V. For the AlN-capped HFETs, VB increased to 1210 ± 351 V with a maximum VB of 1868 V. The AlN-capped HFETs demonstrated a 27% reduction in device-level thermal resistance (RTH) as measured from the gate electrode. The combined use of electrical and thermal simulation helped elucidate the coupled electrothermal contributions to the measured reduction in the temperature rise for the AlN-capped HFETs. Although the measured AlN film thermal conductivity (13.3 ± 1.3 W/mK) was comparable to that of bulk β-Ga2O3, the capping layer still reduced the simulated peak channel temperature rise by ∼4% due to heat spreading only. Electrical simulation revealed that electric field spreading was an additional mechanism that contributed to the majority of the simulated 18% reduction in the peak channel temperature rise through delocalization and redistribution of the heat generation in the channel. Thermal modeling was used to evaluate further improvements in thermal performance that can be realized by optimizing the sputter deposition process to achieve thicker and higher thermal conductivity AlN.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/5.0225896</identifier><identifier>CODEN: JAPIAU</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Capping ; Deposition ; Electric fields ; Electrical resistivity ; Field effect transistors ; Gallium oxides ; Heat conductivity ; Heat generation ; Heat transfer ; Heterostructures ; Performance evaluation ; Room temperature ; Semiconductor devices ; Substrates ; Thermal analysis ; Thermal conductivity ; Thermal resistance ; Thermal simulation ; Transistors</subject><ispartof>Journal of applied physics, 2024-12, Vol.136 (22)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c182t-9932f6e6a446c5266e94ac90e331d70fcb5bd93f29ad4cec282d3257006a9fd3</cites><orcidid>0000-0001-7827-2979 ; 0000-0001-6227-7054 ; 0009-0004-4561-3115 ; 0000-0002-7159-3363 ; 0000-0002-2388-2937 ; 0000-0002-3840-8357 ; 0000-0002-4962-0898 ; 0000-0001-8906-8543 ; 0000-0002-7248-1339 ; 0000-0001-7563-6693 ; 0000-0002-8923-7703 ; 0000-0002-1299-1636 ; 0000-0002-9583-6120</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27911,27912</link.rule.ids></links><search><creatorcontrib>Lundh, James Spencer</creatorcontrib><creatorcontrib>Cress, Cory</creatorcontrib><creatorcontrib>Jacobs, Alan G.</creatorcontrib><creatorcontrib>Cheng, Zhe</creatorcontrib><creatorcontrib>Masten, Hannah N.</creatorcontrib><creatorcontrib>Spencer, Joseph A.</creatorcontrib><creatorcontrib>Sasaki, Kohei</creatorcontrib><creatorcontrib>Gallagher, James</creatorcontrib><creatorcontrib>Koehler, Andrew D.</creatorcontrib><creatorcontrib>Konishi, Keita</creatorcontrib><creatorcontrib>Graham, Samuel</creatorcontrib><creatorcontrib>Kuramata, Akito</creatorcontrib><creatorcontrib>Anderson, Travis J.</creatorcontrib><creatorcontrib>Tadjer, Marko J.</creatorcontrib><creatorcontrib>Hobart, Karl D.</creatorcontrib><creatorcontrib>Mastro, Michael A.</creatorcontrib><title>Electrothermal enhancement of β-(AlxGa1−x)2O3/Ga2O3 heterostructure field-effect transistors via back-end-of-line sputter-deposited AlN layer</title><title>Journal of applied physics</title><description>The electrothermal device performance of β-(Al0.21Ga0.79)2O3/Ga2O3 heterostructure field-effect transistors (HFETs) was enhanced by incorporating a 400 nm thick AlN capping layer via back-end-of-line room-temperature reactive sputter deposition. The AlN-capped HFETs demonstrated DC power densities &gt;5 W/mm, higher than any previous report on lateral β-Ga2O3 transistors on native substrates. The breakdown voltage (VB) of the uncapped HFETs was 569 ± 250 V with a maximum VB of 947 V. For the AlN-capped HFETs, VB increased to 1210 ± 351 V with a maximum VB of 1868 V. The AlN-capped HFETs demonstrated a 27% reduction in device-level thermal resistance (RTH) as measured from the gate electrode. The combined use of electrical and thermal simulation helped elucidate the coupled electrothermal contributions to the measured reduction in the temperature rise for the AlN-capped HFETs. Although the measured AlN film thermal conductivity (13.3 ± 1.3 W/mK) was comparable to that of bulk β-Ga2O3, the capping layer still reduced the simulated peak channel temperature rise by ∼4% due to heat spreading only. Electrical simulation revealed that electric field spreading was an additional mechanism that contributed to the majority of the simulated 18% reduction in the peak channel temperature rise through delocalization and redistribution of the heat generation in the channel. Thermal modeling was used to evaluate further improvements in thermal performance that can be realized by optimizing the sputter deposition process to achieve thicker and higher thermal conductivity AlN.</description><subject>Capping</subject><subject>Deposition</subject><subject>Electric fields</subject><subject>Electrical resistivity</subject><subject>Field effect transistors</subject><subject>Gallium oxides</subject><subject>Heat conductivity</subject><subject>Heat generation</subject><subject>Heat transfer</subject><subject>Heterostructures</subject><subject>Performance evaluation</subject><subject>Room temperature</subject><subject>Semiconductor devices</subject><subject>Substrates</subject><subject>Thermal analysis</subject><subject>Thermal conductivity</subject><subject>Thermal resistance</subject><subject>Thermal simulation</subject><subject>Transistors</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kD1OAzEUhC0EEiFQcANLNATJiX_2z2UUhYAUkSb9yrGflQ2bdbC9KLkBJeIoHIRDcBIWhZrmTfPNjN4gdM3okNFMjNIh5TwtZHaCeowWkuRpSk9Rj1LOSCFzeY4uQthQylghZA-9T2vQ0bu4Br9VNYZmrRoNW2gidhZ_fZLbcb2fKfb99rEf8IUYzVR38RoieBeib3VsPWBbQW0IWNul4ehVE6oQnQ_4tVJ4pfQzgcYQZ0ldNYDDro2dnxjYuVBFMHhcP-FaHcBfojOr6gBXf9pHy_vpcvJA5ovZ42Q8J5oVPBIpBbcZZCpJMp3yLAOZKC0pCMFMTq1epSsjheVSmUSD5gU3gqc5pZmS1og-ujnG7rx7aSHEcuNa33SNpWCJSISQgnbU4Ejp7tfgwZY7X22VP5SMlr97l2n5t3fH3h3ZoKuoYuWaf-Aff1OCcw</recordid><startdate>20241214</startdate><enddate>20241214</enddate><creator>Lundh, James Spencer</creator><creator>Cress, Cory</creator><creator>Jacobs, Alan G.</creator><creator>Cheng, Zhe</creator><creator>Masten, Hannah N.</creator><creator>Spencer, Joseph A.</creator><creator>Sasaki, Kohei</creator><creator>Gallagher, James</creator><creator>Koehler, Andrew D.</creator><creator>Konishi, Keita</creator><creator>Graham, Samuel</creator><creator>Kuramata, Akito</creator><creator>Anderson, Travis J.</creator><creator>Tadjer, Marko J.</creator><creator>Hobart, Karl D.</creator><creator>Mastro, Michael A.</creator><general>American Institute of Physics</general><scope>AJDQP</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-7827-2979</orcidid><orcidid>https://orcid.org/0000-0001-6227-7054</orcidid><orcidid>https://orcid.org/0009-0004-4561-3115</orcidid><orcidid>https://orcid.org/0000-0002-7159-3363</orcidid><orcidid>https://orcid.org/0000-0002-2388-2937</orcidid><orcidid>https://orcid.org/0000-0002-3840-8357</orcidid><orcidid>https://orcid.org/0000-0002-4962-0898</orcidid><orcidid>https://orcid.org/0000-0001-8906-8543</orcidid><orcidid>https://orcid.org/0000-0002-7248-1339</orcidid><orcidid>https://orcid.org/0000-0001-7563-6693</orcidid><orcidid>https://orcid.org/0000-0002-8923-7703</orcidid><orcidid>https://orcid.org/0000-0002-1299-1636</orcidid><orcidid>https://orcid.org/0000-0002-9583-6120</orcidid></search><sort><creationdate>20241214</creationdate><title>Electrothermal enhancement of β-(AlxGa1−x)2O3/Ga2O3 heterostructure field-effect transistors via back-end-of-line sputter-deposited AlN layer</title><author>Lundh, James Spencer ; Cress, Cory ; Jacobs, Alan G. ; Cheng, Zhe ; Masten, Hannah N. ; Spencer, Joseph A. ; Sasaki, Kohei ; Gallagher, James ; Koehler, Andrew D. ; Konishi, Keita ; Graham, Samuel ; Kuramata, Akito ; Anderson, Travis J. ; Tadjer, Marko J. ; Hobart, Karl D. ; Mastro, Michael A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c182t-9932f6e6a446c5266e94ac90e331d70fcb5bd93f29ad4cec282d3257006a9fd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Capping</topic><topic>Deposition</topic><topic>Electric fields</topic><topic>Electrical resistivity</topic><topic>Field effect transistors</topic><topic>Gallium oxides</topic><topic>Heat conductivity</topic><topic>Heat generation</topic><topic>Heat transfer</topic><topic>Heterostructures</topic><topic>Performance evaluation</topic><topic>Room temperature</topic><topic>Semiconductor devices</topic><topic>Substrates</topic><topic>Thermal analysis</topic><topic>Thermal conductivity</topic><topic>Thermal resistance</topic><topic>Thermal simulation</topic><topic>Transistors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lundh, James Spencer</creatorcontrib><creatorcontrib>Cress, Cory</creatorcontrib><creatorcontrib>Jacobs, Alan G.</creatorcontrib><creatorcontrib>Cheng, Zhe</creatorcontrib><creatorcontrib>Masten, Hannah N.</creatorcontrib><creatorcontrib>Spencer, Joseph A.</creatorcontrib><creatorcontrib>Sasaki, Kohei</creatorcontrib><creatorcontrib>Gallagher, James</creatorcontrib><creatorcontrib>Koehler, Andrew D.</creatorcontrib><creatorcontrib>Konishi, Keita</creatorcontrib><creatorcontrib>Graham, Samuel</creatorcontrib><creatorcontrib>Kuramata, Akito</creatorcontrib><creatorcontrib>Anderson, Travis J.</creatorcontrib><creatorcontrib>Tadjer, Marko J.</creatorcontrib><creatorcontrib>Hobart, Karl D.</creatorcontrib><creatorcontrib>Mastro, Michael A.</creatorcontrib><collection>AIP Open Access Journals</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lundh, James Spencer</au><au>Cress, Cory</au><au>Jacobs, Alan G.</au><au>Cheng, Zhe</au><au>Masten, Hannah N.</au><au>Spencer, Joseph A.</au><au>Sasaki, Kohei</au><au>Gallagher, James</au><au>Koehler, Andrew D.</au><au>Konishi, Keita</au><au>Graham, Samuel</au><au>Kuramata, Akito</au><au>Anderson, Travis J.</au><au>Tadjer, Marko J.</au><au>Hobart, Karl D.</au><au>Mastro, Michael A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electrothermal enhancement of β-(AlxGa1−x)2O3/Ga2O3 heterostructure field-effect transistors via back-end-of-line sputter-deposited AlN layer</atitle><jtitle>Journal of applied physics</jtitle><date>2024-12-14</date><risdate>2024</risdate><volume>136</volume><issue>22</issue><issn>0021-8979</issn><eissn>1089-7550</eissn><coden>JAPIAU</coden><abstract>The electrothermal device performance of β-(Al0.21Ga0.79)2O3/Ga2O3 heterostructure field-effect transistors (HFETs) was enhanced by incorporating a 400 nm thick AlN capping layer via back-end-of-line room-temperature reactive sputter deposition. The AlN-capped HFETs demonstrated DC power densities &gt;5 W/mm, higher than any previous report on lateral β-Ga2O3 transistors on native substrates. The breakdown voltage (VB) of the uncapped HFETs was 569 ± 250 V with a maximum VB of 947 V. For the AlN-capped HFETs, VB increased to 1210 ± 351 V with a maximum VB of 1868 V. The AlN-capped HFETs demonstrated a 27% reduction in device-level thermal resistance (RTH) as measured from the gate electrode. The combined use of electrical and thermal simulation helped elucidate the coupled electrothermal contributions to the measured reduction in the temperature rise for the AlN-capped HFETs. Although the measured AlN film thermal conductivity (13.3 ± 1.3 W/mK) was comparable to that of bulk β-Ga2O3, the capping layer still reduced the simulated peak channel temperature rise by ∼4% due to heat spreading only. Electrical simulation revealed that electric field spreading was an additional mechanism that contributed to the majority of the simulated 18% reduction in the peak channel temperature rise through delocalization and redistribution of the heat generation in the channel. Thermal modeling was used to evaluate further improvements in thermal performance that can be realized by optimizing the sputter deposition process to achieve thicker and higher thermal conductivity AlN.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0225896</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-7827-2979</orcidid><orcidid>https://orcid.org/0000-0001-6227-7054</orcidid><orcidid>https://orcid.org/0009-0004-4561-3115</orcidid><orcidid>https://orcid.org/0000-0002-7159-3363</orcidid><orcidid>https://orcid.org/0000-0002-2388-2937</orcidid><orcidid>https://orcid.org/0000-0002-3840-8357</orcidid><orcidid>https://orcid.org/0000-0002-4962-0898</orcidid><orcidid>https://orcid.org/0000-0001-8906-8543</orcidid><orcidid>https://orcid.org/0000-0002-7248-1339</orcidid><orcidid>https://orcid.org/0000-0001-7563-6693</orcidid><orcidid>https://orcid.org/0000-0002-8923-7703</orcidid><orcidid>https://orcid.org/0000-0002-1299-1636</orcidid><orcidid>https://orcid.org/0000-0002-9583-6120</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-8979
ispartof Journal of applied physics, 2024-12, Vol.136 (22)
issn 0021-8979
1089-7550
language eng
recordid cdi_proquest_journals_3143433930
source Alma/SFX Local Collection
subjects Capping
Deposition
Electric fields
Electrical resistivity
Field effect transistors
Gallium oxides
Heat conductivity
Heat generation
Heat transfer
Heterostructures
Performance evaluation
Room temperature
Semiconductor devices
Substrates
Thermal analysis
Thermal conductivity
Thermal resistance
Thermal simulation
Transistors
title Electrothermal enhancement of β-(AlxGa1−x)2O3/Ga2O3 heterostructure field-effect transistors via back-end-of-line sputter-deposited AlN layer
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T05%3A38%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electrothermal%20enhancement%20of%20%CE%B2-(AlxGa1%E2%88%92x)2O3/Ga2O3%20heterostructure%20field-effect%20transistors%20via%20back-end-of-line%20sputter-deposited%20AlN%20layer&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Lundh,%20James%20Spencer&rft.date=2024-12-14&rft.volume=136&rft.issue=22&rft.issn=0021-8979&rft.eissn=1089-7550&rft.coden=JAPIAU&rft_id=info:doi/10.1063/5.0225896&rft_dat=%3Cproquest_cross%3E3143433930%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3143433930&rft_id=info:pmid/&rfr_iscdi=true