Electrothermal enhancement of β-(AlxGa1−x)2O3/Ga2O3 heterostructure field-effect transistors via back-end-of-line sputter-deposited AlN layer
The electrothermal device performance of β-(Al0.21Ga0.79)2O3/Ga2O3 heterostructure field-effect transistors (HFETs) was enhanced by incorporating a 400 nm thick AlN capping layer via back-end-of-line room-temperature reactive sputter deposition. The AlN-capped HFETs demonstrated DC power densities &...
Gespeichert in:
Veröffentlicht in: | Journal of applied physics 2024-12, Vol.136 (22) |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 22 |
container_start_page | |
container_title | Journal of applied physics |
container_volume | 136 |
creator | Lundh, James Spencer Cress, Cory Jacobs, Alan G. Cheng, Zhe Masten, Hannah N. Spencer, Joseph A. Sasaki, Kohei Gallagher, James Koehler, Andrew D. Konishi, Keita Graham, Samuel Kuramata, Akito Anderson, Travis J. Tadjer, Marko J. Hobart, Karl D. Mastro, Michael A. |
description | The electrothermal device performance of β-(Al0.21Ga0.79)2O3/Ga2O3 heterostructure field-effect transistors (HFETs) was enhanced by incorporating a 400 nm thick AlN capping layer via back-end-of-line room-temperature reactive sputter deposition. The AlN-capped HFETs demonstrated DC power densities >5 W/mm, higher than any previous report on lateral β-Ga2O3 transistors on native substrates. The breakdown voltage (VB) of the uncapped HFETs was 569 ± 250 V with a maximum VB of 947 V. For the AlN-capped HFETs, VB increased to 1210 ± 351 V with a maximum VB of 1868 V. The AlN-capped HFETs demonstrated a 27% reduction in device-level thermal resistance (RTH) as measured from the gate electrode. The combined use of electrical and thermal simulation helped elucidate the coupled electrothermal contributions to the measured reduction in the temperature rise for the AlN-capped HFETs. Although the measured AlN film thermal conductivity (13.3 ± 1.3 W/mK) was comparable to that of bulk β-Ga2O3, the capping layer still reduced the simulated peak channel temperature rise by ∼4% due to heat spreading only. Electrical simulation revealed that electric field spreading was an additional mechanism that contributed to the majority of the simulated 18% reduction in the peak channel temperature rise through delocalization and redistribution of the heat generation in the channel. Thermal modeling was used to evaluate further improvements in thermal performance that can be realized by optimizing the sputter deposition process to achieve thicker and higher thermal conductivity AlN. |
doi_str_mv | 10.1063/5.0225896 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3143433930</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3143433930</sourcerecordid><originalsourceid>FETCH-LOGICAL-c182t-9932f6e6a446c5266e94ac90e331d70fcb5bd93f29ad4cec282d3257006a9fd3</originalsourceid><addsrcrecordid>eNp9kD1OAzEUhC0EEiFQcANLNATJiX_2z2UUhYAUkSb9yrGflQ2bdbC9KLkBJeIoHIRDcBIWhZrmTfPNjN4gdM3okNFMjNIh5TwtZHaCeowWkuRpSk9Rj1LOSCFzeY4uQthQylghZA-9T2vQ0bu4Br9VNYZmrRoNW2gidhZ_fZLbcb2fKfb99rEf8IUYzVR38RoieBeib3VsPWBbQW0IWNul4ehVE6oQnQ_4tVJ4pfQzgcYQZ0ldNYDDro2dnxjYuVBFMHhcP-FaHcBfojOr6gBXf9pHy_vpcvJA5ovZ42Q8J5oVPBIpBbcZZCpJMp3yLAOZKC0pCMFMTq1epSsjheVSmUSD5gU3gqc5pZmS1og-ujnG7rx7aSHEcuNa33SNpWCJSISQgnbU4Ejp7tfgwZY7X22VP5SMlr97l2n5t3fH3h3ZoKuoYuWaf-Aff1OCcw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3143433930</pqid></control><display><type>article</type><title>Electrothermal enhancement of β-(AlxGa1−x)2O3/Ga2O3 heterostructure field-effect transistors via back-end-of-line sputter-deposited AlN layer</title><source>Alma/SFX Local Collection</source><creator>Lundh, James Spencer ; Cress, Cory ; Jacobs, Alan G. ; Cheng, Zhe ; Masten, Hannah N. ; Spencer, Joseph A. ; Sasaki, Kohei ; Gallagher, James ; Koehler, Andrew D. ; Konishi, Keita ; Graham, Samuel ; Kuramata, Akito ; Anderson, Travis J. ; Tadjer, Marko J. ; Hobart, Karl D. ; Mastro, Michael A.</creator><creatorcontrib>Lundh, James Spencer ; Cress, Cory ; Jacobs, Alan G. ; Cheng, Zhe ; Masten, Hannah N. ; Spencer, Joseph A. ; Sasaki, Kohei ; Gallagher, James ; Koehler, Andrew D. ; Konishi, Keita ; Graham, Samuel ; Kuramata, Akito ; Anderson, Travis J. ; Tadjer, Marko J. ; Hobart, Karl D. ; Mastro, Michael A.</creatorcontrib><description>The electrothermal device performance of β-(Al0.21Ga0.79)2O3/Ga2O3 heterostructure field-effect transistors (HFETs) was enhanced by incorporating a 400 nm thick AlN capping layer via back-end-of-line room-temperature reactive sputter deposition. The AlN-capped HFETs demonstrated DC power densities >5 W/mm, higher than any previous report on lateral β-Ga2O3 transistors on native substrates. The breakdown voltage (VB) of the uncapped HFETs was 569 ± 250 V with a maximum VB of 947 V. For the AlN-capped HFETs, VB increased to 1210 ± 351 V with a maximum VB of 1868 V. The AlN-capped HFETs demonstrated a 27% reduction in device-level thermal resistance (RTH) as measured from the gate electrode. The combined use of electrical and thermal simulation helped elucidate the coupled electrothermal contributions to the measured reduction in the temperature rise for the AlN-capped HFETs. Although the measured AlN film thermal conductivity (13.3 ± 1.3 W/mK) was comparable to that of bulk β-Ga2O3, the capping layer still reduced the simulated peak channel temperature rise by ∼4% due to heat spreading only. Electrical simulation revealed that electric field spreading was an additional mechanism that contributed to the majority of the simulated 18% reduction in the peak channel temperature rise through delocalization and redistribution of the heat generation in the channel. Thermal modeling was used to evaluate further improvements in thermal performance that can be realized by optimizing the sputter deposition process to achieve thicker and higher thermal conductivity AlN.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/5.0225896</identifier><identifier>CODEN: JAPIAU</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Capping ; Deposition ; Electric fields ; Electrical resistivity ; Field effect transistors ; Gallium oxides ; Heat conductivity ; Heat generation ; Heat transfer ; Heterostructures ; Performance evaluation ; Room temperature ; Semiconductor devices ; Substrates ; Thermal analysis ; Thermal conductivity ; Thermal resistance ; Thermal simulation ; Transistors</subject><ispartof>Journal of applied physics, 2024-12, Vol.136 (22)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c182t-9932f6e6a446c5266e94ac90e331d70fcb5bd93f29ad4cec282d3257006a9fd3</cites><orcidid>0000-0001-7827-2979 ; 0000-0001-6227-7054 ; 0009-0004-4561-3115 ; 0000-0002-7159-3363 ; 0000-0002-2388-2937 ; 0000-0002-3840-8357 ; 0000-0002-4962-0898 ; 0000-0001-8906-8543 ; 0000-0002-7248-1339 ; 0000-0001-7563-6693 ; 0000-0002-8923-7703 ; 0000-0002-1299-1636 ; 0000-0002-9583-6120</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27911,27912</link.rule.ids></links><search><creatorcontrib>Lundh, James Spencer</creatorcontrib><creatorcontrib>Cress, Cory</creatorcontrib><creatorcontrib>Jacobs, Alan G.</creatorcontrib><creatorcontrib>Cheng, Zhe</creatorcontrib><creatorcontrib>Masten, Hannah N.</creatorcontrib><creatorcontrib>Spencer, Joseph A.</creatorcontrib><creatorcontrib>Sasaki, Kohei</creatorcontrib><creatorcontrib>Gallagher, James</creatorcontrib><creatorcontrib>Koehler, Andrew D.</creatorcontrib><creatorcontrib>Konishi, Keita</creatorcontrib><creatorcontrib>Graham, Samuel</creatorcontrib><creatorcontrib>Kuramata, Akito</creatorcontrib><creatorcontrib>Anderson, Travis J.</creatorcontrib><creatorcontrib>Tadjer, Marko J.</creatorcontrib><creatorcontrib>Hobart, Karl D.</creatorcontrib><creatorcontrib>Mastro, Michael A.</creatorcontrib><title>Electrothermal enhancement of β-(AlxGa1−x)2O3/Ga2O3 heterostructure field-effect transistors via back-end-of-line sputter-deposited AlN layer</title><title>Journal of applied physics</title><description>The electrothermal device performance of β-(Al0.21Ga0.79)2O3/Ga2O3 heterostructure field-effect transistors (HFETs) was enhanced by incorporating a 400 nm thick AlN capping layer via back-end-of-line room-temperature reactive sputter deposition. The AlN-capped HFETs demonstrated DC power densities >5 W/mm, higher than any previous report on lateral β-Ga2O3 transistors on native substrates. The breakdown voltage (VB) of the uncapped HFETs was 569 ± 250 V with a maximum VB of 947 V. For the AlN-capped HFETs, VB increased to 1210 ± 351 V with a maximum VB of 1868 V. The AlN-capped HFETs demonstrated a 27% reduction in device-level thermal resistance (RTH) as measured from the gate electrode. The combined use of electrical and thermal simulation helped elucidate the coupled electrothermal contributions to the measured reduction in the temperature rise for the AlN-capped HFETs. Although the measured AlN film thermal conductivity (13.3 ± 1.3 W/mK) was comparable to that of bulk β-Ga2O3, the capping layer still reduced the simulated peak channel temperature rise by ∼4% due to heat spreading only. Electrical simulation revealed that electric field spreading was an additional mechanism that contributed to the majority of the simulated 18% reduction in the peak channel temperature rise through delocalization and redistribution of the heat generation in the channel. Thermal modeling was used to evaluate further improvements in thermal performance that can be realized by optimizing the sputter deposition process to achieve thicker and higher thermal conductivity AlN.</description><subject>Capping</subject><subject>Deposition</subject><subject>Electric fields</subject><subject>Electrical resistivity</subject><subject>Field effect transistors</subject><subject>Gallium oxides</subject><subject>Heat conductivity</subject><subject>Heat generation</subject><subject>Heat transfer</subject><subject>Heterostructures</subject><subject>Performance evaluation</subject><subject>Room temperature</subject><subject>Semiconductor devices</subject><subject>Substrates</subject><subject>Thermal analysis</subject><subject>Thermal conductivity</subject><subject>Thermal resistance</subject><subject>Thermal simulation</subject><subject>Transistors</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kD1OAzEUhC0EEiFQcANLNATJiX_2z2UUhYAUkSb9yrGflQ2bdbC9KLkBJeIoHIRDcBIWhZrmTfPNjN4gdM3okNFMjNIh5TwtZHaCeowWkuRpSk9Rj1LOSCFzeY4uQthQylghZA-9T2vQ0bu4Br9VNYZmrRoNW2gidhZ_fZLbcb2fKfb99rEf8IUYzVR38RoieBeib3VsPWBbQW0IWNul4ehVE6oQnQ_4tVJ4pfQzgcYQZ0ldNYDDro2dnxjYuVBFMHhcP-FaHcBfojOr6gBXf9pHy_vpcvJA5ovZ42Q8J5oVPBIpBbcZZCpJMp3yLAOZKC0pCMFMTq1epSsjheVSmUSD5gU3gqc5pZmS1og-ujnG7rx7aSHEcuNa33SNpWCJSISQgnbU4Ejp7tfgwZY7X22VP5SMlr97l2n5t3fH3h3ZoKuoYuWaf-Aff1OCcw</recordid><startdate>20241214</startdate><enddate>20241214</enddate><creator>Lundh, James Spencer</creator><creator>Cress, Cory</creator><creator>Jacobs, Alan G.</creator><creator>Cheng, Zhe</creator><creator>Masten, Hannah N.</creator><creator>Spencer, Joseph A.</creator><creator>Sasaki, Kohei</creator><creator>Gallagher, James</creator><creator>Koehler, Andrew D.</creator><creator>Konishi, Keita</creator><creator>Graham, Samuel</creator><creator>Kuramata, Akito</creator><creator>Anderson, Travis J.</creator><creator>Tadjer, Marko J.</creator><creator>Hobart, Karl D.</creator><creator>Mastro, Michael A.</creator><general>American Institute of Physics</general><scope>AJDQP</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-7827-2979</orcidid><orcidid>https://orcid.org/0000-0001-6227-7054</orcidid><orcidid>https://orcid.org/0009-0004-4561-3115</orcidid><orcidid>https://orcid.org/0000-0002-7159-3363</orcidid><orcidid>https://orcid.org/0000-0002-2388-2937</orcidid><orcidid>https://orcid.org/0000-0002-3840-8357</orcidid><orcidid>https://orcid.org/0000-0002-4962-0898</orcidid><orcidid>https://orcid.org/0000-0001-8906-8543</orcidid><orcidid>https://orcid.org/0000-0002-7248-1339</orcidid><orcidid>https://orcid.org/0000-0001-7563-6693</orcidid><orcidid>https://orcid.org/0000-0002-8923-7703</orcidid><orcidid>https://orcid.org/0000-0002-1299-1636</orcidid><orcidid>https://orcid.org/0000-0002-9583-6120</orcidid></search><sort><creationdate>20241214</creationdate><title>Electrothermal enhancement of β-(AlxGa1−x)2O3/Ga2O3 heterostructure field-effect transistors via back-end-of-line sputter-deposited AlN layer</title><author>Lundh, James Spencer ; Cress, Cory ; Jacobs, Alan G. ; Cheng, Zhe ; Masten, Hannah N. ; Spencer, Joseph A. ; Sasaki, Kohei ; Gallagher, James ; Koehler, Andrew D. ; Konishi, Keita ; Graham, Samuel ; Kuramata, Akito ; Anderson, Travis J. ; Tadjer, Marko J. ; Hobart, Karl D. ; Mastro, Michael A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c182t-9932f6e6a446c5266e94ac90e331d70fcb5bd93f29ad4cec282d3257006a9fd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Capping</topic><topic>Deposition</topic><topic>Electric fields</topic><topic>Electrical resistivity</topic><topic>Field effect transistors</topic><topic>Gallium oxides</topic><topic>Heat conductivity</topic><topic>Heat generation</topic><topic>Heat transfer</topic><topic>Heterostructures</topic><topic>Performance evaluation</topic><topic>Room temperature</topic><topic>Semiconductor devices</topic><topic>Substrates</topic><topic>Thermal analysis</topic><topic>Thermal conductivity</topic><topic>Thermal resistance</topic><topic>Thermal simulation</topic><topic>Transistors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lundh, James Spencer</creatorcontrib><creatorcontrib>Cress, Cory</creatorcontrib><creatorcontrib>Jacobs, Alan G.</creatorcontrib><creatorcontrib>Cheng, Zhe</creatorcontrib><creatorcontrib>Masten, Hannah N.</creatorcontrib><creatorcontrib>Spencer, Joseph A.</creatorcontrib><creatorcontrib>Sasaki, Kohei</creatorcontrib><creatorcontrib>Gallagher, James</creatorcontrib><creatorcontrib>Koehler, Andrew D.</creatorcontrib><creatorcontrib>Konishi, Keita</creatorcontrib><creatorcontrib>Graham, Samuel</creatorcontrib><creatorcontrib>Kuramata, Akito</creatorcontrib><creatorcontrib>Anderson, Travis J.</creatorcontrib><creatorcontrib>Tadjer, Marko J.</creatorcontrib><creatorcontrib>Hobart, Karl D.</creatorcontrib><creatorcontrib>Mastro, Michael A.</creatorcontrib><collection>AIP Open Access Journals</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lundh, James Spencer</au><au>Cress, Cory</au><au>Jacobs, Alan G.</au><au>Cheng, Zhe</au><au>Masten, Hannah N.</au><au>Spencer, Joseph A.</au><au>Sasaki, Kohei</au><au>Gallagher, James</au><au>Koehler, Andrew D.</au><au>Konishi, Keita</au><au>Graham, Samuel</au><au>Kuramata, Akito</au><au>Anderson, Travis J.</au><au>Tadjer, Marko J.</au><au>Hobart, Karl D.</au><au>Mastro, Michael A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electrothermal enhancement of β-(AlxGa1−x)2O3/Ga2O3 heterostructure field-effect transistors via back-end-of-line sputter-deposited AlN layer</atitle><jtitle>Journal of applied physics</jtitle><date>2024-12-14</date><risdate>2024</risdate><volume>136</volume><issue>22</issue><issn>0021-8979</issn><eissn>1089-7550</eissn><coden>JAPIAU</coden><abstract>The electrothermal device performance of β-(Al0.21Ga0.79)2O3/Ga2O3 heterostructure field-effect transistors (HFETs) was enhanced by incorporating a 400 nm thick AlN capping layer via back-end-of-line room-temperature reactive sputter deposition. The AlN-capped HFETs demonstrated DC power densities >5 W/mm, higher than any previous report on lateral β-Ga2O3 transistors on native substrates. The breakdown voltage (VB) of the uncapped HFETs was 569 ± 250 V with a maximum VB of 947 V. For the AlN-capped HFETs, VB increased to 1210 ± 351 V with a maximum VB of 1868 V. The AlN-capped HFETs demonstrated a 27% reduction in device-level thermal resistance (RTH) as measured from the gate electrode. The combined use of electrical and thermal simulation helped elucidate the coupled electrothermal contributions to the measured reduction in the temperature rise for the AlN-capped HFETs. Although the measured AlN film thermal conductivity (13.3 ± 1.3 W/mK) was comparable to that of bulk β-Ga2O3, the capping layer still reduced the simulated peak channel temperature rise by ∼4% due to heat spreading only. Electrical simulation revealed that electric field spreading was an additional mechanism that contributed to the majority of the simulated 18% reduction in the peak channel temperature rise through delocalization and redistribution of the heat generation in the channel. Thermal modeling was used to evaluate further improvements in thermal performance that can be realized by optimizing the sputter deposition process to achieve thicker and higher thermal conductivity AlN.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0225896</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-7827-2979</orcidid><orcidid>https://orcid.org/0000-0001-6227-7054</orcidid><orcidid>https://orcid.org/0009-0004-4561-3115</orcidid><orcidid>https://orcid.org/0000-0002-7159-3363</orcidid><orcidid>https://orcid.org/0000-0002-2388-2937</orcidid><orcidid>https://orcid.org/0000-0002-3840-8357</orcidid><orcidid>https://orcid.org/0000-0002-4962-0898</orcidid><orcidid>https://orcid.org/0000-0001-8906-8543</orcidid><orcidid>https://orcid.org/0000-0002-7248-1339</orcidid><orcidid>https://orcid.org/0000-0001-7563-6693</orcidid><orcidid>https://orcid.org/0000-0002-8923-7703</orcidid><orcidid>https://orcid.org/0000-0002-1299-1636</orcidid><orcidid>https://orcid.org/0000-0002-9583-6120</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-8979 |
ispartof | Journal of applied physics, 2024-12, Vol.136 (22) |
issn | 0021-8979 1089-7550 |
language | eng |
recordid | cdi_proquest_journals_3143433930 |
source | Alma/SFX Local Collection |
subjects | Capping Deposition Electric fields Electrical resistivity Field effect transistors Gallium oxides Heat conductivity Heat generation Heat transfer Heterostructures Performance evaluation Room temperature Semiconductor devices Substrates Thermal analysis Thermal conductivity Thermal resistance Thermal simulation Transistors |
title | Electrothermal enhancement of β-(AlxGa1−x)2O3/Ga2O3 heterostructure field-effect transistors via back-end-of-line sputter-deposited AlN layer |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T05%3A38%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electrothermal%20enhancement%20of%20%CE%B2-(AlxGa1%E2%88%92x)2O3/Ga2O3%20heterostructure%20field-effect%20transistors%20via%20back-end-of-line%20sputter-deposited%20AlN%20layer&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Lundh,%20James%20Spencer&rft.date=2024-12-14&rft.volume=136&rft.issue=22&rft.issn=0021-8979&rft.eissn=1089-7550&rft.coden=JAPIAU&rft_id=info:doi/10.1063/5.0225896&rft_dat=%3Cproquest_cross%3E3143433930%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3143433930&rft_id=info:pmid/&rfr_iscdi=true |