Bioorthogonal Engineering of Bacterial Outer Membrane Vesicles for NIR-II Fluorescence Imaging-Guided Synergistic Enhanced ImmunotherapyClick to copy article link
The efficacy of immunotherapy in treating triple-negative breast cancer (TNBC) has been restricted due to its low immunogenicity and suppressive immune microenvironment. Bacterial outer membrane vesicles (OMVs) have emerged as innovative immunotherapeutic agents in antitumor therapy by stimulating t...
Gespeichert in:
Veröffentlicht in: | Analytical chemistry (Washington) 2024-12, Vol.96 (49), p.19585 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 49 |
container_start_page | 19585 |
container_title | Analytical chemistry (Washington) |
container_volume | 96 |
creator | Li, Na Wang, Minghui Liu, Fen Wu, Peixian Wu, Fan Xiao, Hao Kang, Qiang Li, Zelong Yang, Sha Wu, Guilong Tan, Xiaofeng Yang, Qinglai |
description | The efficacy of immunotherapy in treating triple-negative breast cancer (TNBC) has been restricted due to its low immunogenicity and suppressive immune microenvironment. Bacterial outer membrane vesicles (OMVs) have emerged as innovative immunotherapeutic agents in antitumor therapy by stimulating the innate immune system, but intricate modifications and undesirable multiple dose administration severely hinder their utility. Herein, a two-step bacterial metabolic labeling technique was utilized for the bioorthogonal engineering of OMVs. At first, d-propargylglycine (DPG, an alkyne-containing d-amino acid) was introduced into the incubation process of probiotic Escherichia coli 1917 (Ecn) to produce DPG-functionalized OMVs, which were subsequently conjugated with azide-functionalized new indocyanine green (IR820) to yield OMV-DPG-IR820. The combination of phototherapy and immunostimulation of OMV-DPG-IR820 effectively arouses adaptive immune responses, causing maturation of dendritic cells, infiltration of T cells, repolarization of the M2 macrophage to the M1 macrophage, and upregulation of inflammatory factors. Remarkably, OMV-DPG-IR820 demonstrated tumor-targeting capabilities with guidance provided by near-infrared II (NIR-II) fluorescence imaging, leading to remarkable inhibition on both primary and distant tumors and preventing metastasis without causing noticeable adverse reactions. This study elucidates a sophisticated bioorthogonal engineering strategy for the design and production of functionalized OMVs and provides novel perspectives on the microbiome-mediated reversal of TNBC through a precise and efficient immunotherapy. |
doi_str_mv | 10.1021/acs.analchem.4c04449 |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3143392921</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3143392921</sourcerecordid><originalsourceid>FETCH-proquest_journals_31433929213</originalsourceid><addsrcrecordid>eNqNjstOwzAQRS0EEuHxByxGYp1gO6E021YtzQKQALGtjDNJ3Dp28GOR3-FLMRIfwGrmao7OHUJuGC0Y5exOSF8II7QccCwqSauqqk9Ixu45zRfLJT8lGaW0zPkDpefkwvsDpYxRtsjI90pZ68Jge5sEsDG9MohOmR5sByshQwrp8BLTAk84fjphED7QK6nRQ2cdPDevedPAVkfr0Es0EqEZRTL1-WNULbbwNht0vfJBydQxiIS0iRmjsWFAJ6Z5rZU8QrAg7TSDcOHXD1qZ4xU564T2eP03L8ntdvO-3uWTs18RfdgfbHTpe78vWVWWNa85K_9H_QCUgmaI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3143392921</pqid></control><display><type>article</type><title>Bioorthogonal Engineering of Bacterial Outer Membrane Vesicles for NIR-II Fluorescence Imaging-Guided Synergistic Enhanced ImmunotherapyClick to copy article link</title><source>ACS Publications</source><creator>Li, Na ; Wang, Minghui ; Liu, Fen ; Wu, Peixian ; Wu, Fan ; Xiao, Hao ; Kang, Qiang ; Li, Zelong ; Yang, Sha ; Wu, Guilong ; Tan, Xiaofeng ; Yang, Qinglai</creator><creatorcontrib>Li, Na ; Wang, Minghui ; Liu, Fen ; Wu, Peixian ; Wu, Fan ; Xiao, Hao ; Kang, Qiang ; Li, Zelong ; Yang, Sha ; Wu, Guilong ; Tan, Xiaofeng ; Yang, Qinglai</creatorcontrib><description>The efficacy of immunotherapy in treating triple-negative breast cancer (TNBC) has been restricted due to its low immunogenicity and suppressive immune microenvironment. Bacterial outer membrane vesicles (OMVs) have emerged as innovative immunotherapeutic agents in antitumor therapy by stimulating the innate immune system, but intricate modifications and undesirable multiple dose administration severely hinder their utility. Herein, a two-step bacterial metabolic labeling technique was utilized for the bioorthogonal engineering of OMVs. At first, d-propargylglycine (DPG, an alkyne-containing d-amino acid) was introduced into the incubation process of probiotic Escherichia coli 1917 (Ecn) to produce DPG-functionalized OMVs, which were subsequently conjugated with azide-functionalized new indocyanine green (IR820) to yield OMV-DPG-IR820. The combination of phototherapy and immunostimulation of OMV-DPG-IR820 effectively arouses adaptive immune responses, causing maturation of dendritic cells, infiltration of T cells, repolarization of the M2 macrophage to the M1 macrophage, and upregulation of inflammatory factors. Remarkably, OMV-DPG-IR820 demonstrated tumor-targeting capabilities with guidance provided by near-infrared II (NIR-II) fluorescence imaging, leading to remarkable inhibition on both primary and distant tumors and preventing metastasis without causing noticeable adverse reactions. This study elucidates a sophisticated bioorthogonal engineering strategy for the design and production of functionalized OMVs and provides novel perspectives on the microbiome-mediated reversal of TNBC through a precise and efficient immunotherapy.</description><identifier>ISSN: 0003-2700</identifier><identifier>EISSN: 1520-6882</identifier><identifier>DOI: 10.1021/acs.analchem.4c04449</identifier><language>eng</language><publisher>Washington: American Chemical Society</publisher><subject>Alkynes ; Amino acids ; Bacterial vesicles ; Dendritic cells ; E coli ; Fluorescence ; Immune system ; Immunogenicity ; Immunostimulation ; Immunotherapy ; Innate immunity ; Lymphocytes ; Lymphocytes T ; Macrophages ; Membrane vesicles ; Membranes ; Metabolic engineering ; Metastases ; Microbiomes ; Microenvironments ; Near infrared radiation ; Phototherapy ; Probiotics ; Vesicles</subject><ispartof>Analytical chemistry (Washington), 2024-12, Vol.96 (49), p.19585</ispartof><rights>Copyright American Chemical Society Dec 10, 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Li, Na</creatorcontrib><creatorcontrib>Wang, Minghui</creatorcontrib><creatorcontrib>Liu, Fen</creatorcontrib><creatorcontrib>Wu, Peixian</creatorcontrib><creatorcontrib>Wu, Fan</creatorcontrib><creatorcontrib>Xiao, Hao</creatorcontrib><creatorcontrib>Kang, Qiang</creatorcontrib><creatorcontrib>Li, Zelong</creatorcontrib><creatorcontrib>Yang, Sha</creatorcontrib><creatorcontrib>Wu, Guilong</creatorcontrib><creatorcontrib>Tan, Xiaofeng</creatorcontrib><creatorcontrib>Yang, Qinglai</creatorcontrib><title>Bioorthogonal Engineering of Bacterial Outer Membrane Vesicles for NIR-II Fluorescence Imaging-Guided Synergistic Enhanced ImmunotherapyClick to copy article link</title><title>Analytical chemistry (Washington)</title><description>The efficacy of immunotherapy in treating triple-negative breast cancer (TNBC) has been restricted due to its low immunogenicity and suppressive immune microenvironment. Bacterial outer membrane vesicles (OMVs) have emerged as innovative immunotherapeutic agents in antitumor therapy by stimulating the innate immune system, but intricate modifications and undesirable multiple dose administration severely hinder their utility. Herein, a two-step bacterial metabolic labeling technique was utilized for the bioorthogonal engineering of OMVs. At first, d-propargylglycine (DPG, an alkyne-containing d-amino acid) was introduced into the incubation process of probiotic Escherichia coli 1917 (Ecn) to produce DPG-functionalized OMVs, which were subsequently conjugated with azide-functionalized new indocyanine green (IR820) to yield OMV-DPG-IR820. The combination of phototherapy and immunostimulation of OMV-DPG-IR820 effectively arouses adaptive immune responses, causing maturation of dendritic cells, infiltration of T cells, repolarization of the M2 macrophage to the M1 macrophage, and upregulation of inflammatory factors. Remarkably, OMV-DPG-IR820 demonstrated tumor-targeting capabilities with guidance provided by near-infrared II (NIR-II) fluorescence imaging, leading to remarkable inhibition on both primary and distant tumors and preventing metastasis without causing noticeable adverse reactions. This study elucidates a sophisticated bioorthogonal engineering strategy for the design and production of functionalized OMVs and provides novel perspectives on the microbiome-mediated reversal of TNBC through a precise and efficient immunotherapy.</description><subject>Alkynes</subject><subject>Amino acids</subject><subject>Bacterial vesicles</subject><subject>Dendritic cells</subject><subject>E coli</subject><subject>Fluorescence</subject><subject>Immune system</subject><subject>Immunogenicity</subject><subject>Immunostimulation</subject><subject>Immunotherapy</subject><subject>Innate immunity</subject><subject>Lymphocytes</subject><subject>Lymphocytes T</subject><subject>Macrophages</subject><subject>Membrane vesicles</subject><subject>Membranes</subject><subject>Metabolic engineering</subject><subject>Metastases</subject><subject>Microbiomes</subject><subject>Microenvironments</subject><subject>Near infrared radiation</subject><subject>Phototherapy</subject><subject>Probiotics</subject><subject>Vesicles</subject><issn>0003-2700</issn><issn>1520-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqNjstOwzAQRS0EEuHxByxGYp1gO6E021YtzQKQALGtjDNJ3Dp28GOR3-FLMRIfwGrmao7OHUJuGC0Y5exOSF8II7QccCwqSauqqk9Ixu45zRfLJT8lGaW0zPkDpefkwvsDpYxRtsjI90pZ68Jge5sEsDG9MohOmR5sByshQwrp8BLTAk84fjphED7QK6nRQ2cdPDevedPAVkfr0Es0EqEZRTL1-WNULbbwNht0vfJBydQxiIS0iRmjsWFAJ6Z5rZU8QrAg7TSDcOHXD1qZ4xU564T2eP03L8ntdvO-3uWTs18RfdgfbHTpe78vWVWWNa85K_9H_QCUgmaI</recordid><startdate>20241210</startdate><enddate>20241210</enddate><creator>Li, Na</creator><creator>Wang, Minghui</creator><creator>Liu, Fen</creator><creator>Wu, Peixian</creator><creator>Wu, Fan</creator><creator>Xiao, Hao</creator><creator>Kang, Qiang</creator><creator>Li, Zelong</creator><creator>Yang, Sha</creator><creator>Wu, Guilong</creator><creator>Tan, Xiaofeng</creator><creator>Yang, Qinglai</creator><general>American Chemical Society</general><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U7</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope></search><sort><creationdate>20241210</creationdate><title>Bioorthogonal Engineering of Bacterial Outer Membrane Vesicles for NIR-II Fluorescence Imaging-Guided Synergistic Enhanced ImmunotherapyClick to copy article link</title><author>Li, Na ; Wang, Minghui ; Liu, Fen ; Wu, Peixian ; Wu, Fan ; Xiao, Hao ; Kang, Qiang ; Li, Zelong ; Yang, Sha ; Wu, Guilong ; Tan, Xiaofeng ; Yang, Qinglai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_31433929213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Alkynes</topic><topic>Amino acids</topic><topic>Bacterial vesicles</topic><topic>Dendritic cells</topic><topic>E coli</topic><topic>Fluorescence</topic><topic>Immune system</topic><topic>Immunogenicity</topic><topic>Immunostimulation</topic><topic>Immunotherapy</topic><topic>Innate immunity</topic><topic>Lymphocytes</topic><topic>Lymphocytes T</topic><topic>Macrophages</topic><topic>Membrane vesicles</topic><topic>Membranes</topic><topic>Metabolic engineering</topic><topic>Metastases</topic><topic>Microbiomes</topic><topic>Microenvironments</topic><topic>Near infrared radiation</topic><topic>Phototherapy</topic><topic>Probiotics</topic><topic>Vesicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Na</creatorcontrib><creatorcontrib>Wang, Minghui</creatorcontrib><creatorcontrib>Liu, Fen</creatorcontrib><creatorcontrib>Wu, Peixian</creatorcontrib><creatorcontrib>Wu, Fan</creatorcontrib><creatorcontrib>Xiao, Hao</creatorcontrib><creatorcontrib>Kang, Qiang</creatorcontrib><creatorcontrib>Li, Zelong</creatorcontrib><creatorcontrib>Yang, Sha</creatorcontrib><creatorcontrib>Wu, Guilong</creatorcontrib><creatorcontrib>Tan, Xiaofeng</creatorcontrib><creatorcontrib>Yang, Qinglai</creatorcontrib><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Analytical chemistry (Washington)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Na</au><au>Wang, Minghui</au><au>Liu, Fen</au><au>Wu, Peixian</au><au>Wu, Fan</au><au>Xiao, Hao</au><au>Kang, Qiang</au><au>Li, Zelong</au><au>Yang, Sha</au><au>Wu, Guilong</au><au>Tan, Xiaofeng</au><au>Yang, Qinglai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bioorthogonal Engineering of Bacterial Outer Membrane Vesicles for NIR-II Fluorescence Imaging-Guided Synergistic Enhanced ImmunotherapyClick to copy article link</atitle><jtitle>Analytical chemistry (Washington)</jtitle><date>2024-12-10</date><risdate>2024</risdate><volume>96</volume><issue>49</issue><spage>19585</spage><pages>19585-</pages><issn>0003-2700</issn><eissn>1520-6882</eissn><abstract>The efficacy of immunotherapy in treating triple-negative breast cancer (TNBC) has been restricted due to its low immunogenicity and suppressive immune microenvironment. Bacterial outer membrane vesicles (OMVs) have emerged as innovative immunotherapeutic agents in antitumor therapy by stimulating the innate immune system, but intricate modifications and undesirable multiple dose administration severely hinder their utility. Herein, a two-step bacterial metabolic labeling technique was utilized for the bioorthogonal engineering of OMVs. At first, d-propargylglycine (DPG, an alkyne-containing d-amino acid) was introduced into the incubation process of probiotic Escherichia coli 1917 (Ecn) to produce DPG-functionalized OMVs, which were subsequently conjugated with azide-functionalized new indocyanine green (IR820) to yield OMV-DPG-IR820. The combination of phototherapy and immunostimulation of OMV-DPG-IR820 effectively arouses adaptive immune responses, causing maturation of dendritic cells, infiltration of T cells, repolarization of the M2 macrophage to the M1 macrophage, and upregulation of inflammatory factors. Remarkably, OMV-DPG-IR820 demonstrated tumor-targeting capabilities with guidance provided by near-infrared II (NIR-II) fluorescence imaging, leading to remarkable inhibition on both primary and distant tumors and preventing metastasis without causing noticeable adverse reactions. This study elucidates a sophisticated bioorthogonal engineering strategy for the design and production of functionalized OMVs and provides novel perspectives on the microbiome-mediated reversal of TNBC through a precise and efficient immunotherapy.</abstract><cop>Washington</cop><pub>American Chemical Society</pub><doi>10.1021/acs.analchem.4c04449</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-2700 |
ispartof | Analytical chemistry (Washington), 2024-12, Vol.96 (49), p.19585 |
issn | 0003-2700 1520-6882 |
language | eng |
recordid | cdi_proquest_journals_3143392921 |
source | ACS Publications |
subjects | Alkynes Amino acids Bacterial vesicles Dendritic cells E coli Fluorescence Immune system Immunogenicity Immunostimulation Immunotherapy Innate immunity Lymphocytes Lymphocytes T Macrophages Membrane vesicles Membranes Metabolic engineering Metastases Microbiomes Microenvironments Near infrared radiation Phototherapy Probiotics Vesicles |
title | Bioorthogonal Engineering of Bacterial Outer Membrane Vesicles for NIR-II Fluorescence Imaging-Guided Synergistic Enhanced ImmunotherapyClick to copy article link |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T23%3A17%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bioorthogonal%20Engineering%20of%20Bacterial%20Outer%20Membrane%20Vesicles%20for%20NIR-II%20Fluorescence%20Imaging-Guided%20Synergistic%20Enhanced%20ImmunotherapyClick%20to%20copy%20article%20link&rft.jtitle=Analytical%20chemistry%20(Washington)&rft.au=Li,%20Na&rft.date=2024-12-10&rft.volume=96&rft.issue=49&rft.spage=19585&rft.pages=19585-&rft.issn=0003-2700&rft.eissn=1520-6882&rft_id=info:doi/10.1021/acs.analchem.4c04449&rft_dat=%3Cproquest%3E3143392921%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3143392921&rft_id=info:pmid/&rfr_iscdi=true |