Integrating multicriteria decision making and principal component analysis: a systematic literature review
Decision-support methods are crucial for analyzing complex alternatives and criteria in today's data-driven world. This Systematic Literature Review (SLR) explores and synthesizes knowledge about decision support methodologies that integrate Multicriteria Decision Making (MCDM) and Principal Co...
Gespeichert in:
Veröffentlicht in: | Cogent engineering 2024-12, Vol.11 (1) |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | Cogent engineering |
container_volume | 11 |
creator | Costa, Arthur Pinheiro de Araújo Choren, Ricardo Pereira, Daniel Augusto de Moura Terra, Adilson Vilarinho Costa, Igor Pinheiro de Araújo Junior, Claudio de Souza Rocha Santos, Marcos dos Gomes, Carlos Francisco Simões Moreira, Miguel Ângelo Lellis |
description | Decision-support methods are crucial for analyzing complex alternatives and criteria in today's data-driven world. This Systematic Literature Review (SLR) explores and synthesizes knowledge about decision support methodologies that integrate Multicriteria Decision Making (MCDM) and Principal Component Analysis (PCA), an unsupervised Machine Learning (ML) technique. Both techniques optimize complex decisions by combining multiple criteria and dimensional data analysis. Focusing on performance evaluations, criterion weighting, and validation testing, this review identifies significant gaps in existing methodologies. These include the lack of consideration for non-beneficial criteria in PCA, insufficient validation tests in over half of the studies, and the non-use of communalities (the contribution of each criterion to the main factors) in decision support approaches. Additionally, this SLR offers a comprehensive quantitative overview, analyzing data from the Scopus, IEEE, and Web of Science databases and identifying 16 relevant studies. Furthermore, the scarcity of systematic reviews integrating MCDM and PCA techniques impedes evidence-based decision-making practices and theoretical evolution. This is particularly crucial as ML and data analysis advance rapidly, requiring models that reflect technological innovations. This article addresses this gap in the literature by providing an analysis of decision support methods and guiding further improvement in this field. |
doi_str_mv | 10.1080/23311916.2024.2374944 |
format | Article |
fullrecord | <record><control><sourceid>proquest_infor</sourceid><recordid>TN_cdi_proquest_journals_3143111549</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_120556b59f504cf0bd95fe2a08ac8c32</doaj_id><sourcerecordid>3143111549</sourcerecordid><originalsourceid>FETCH-LOGICAL-c329t-9964921b5a79a2de009be8aebee3a77b21f2ca54afab799720fbbbd5c55081c03</originalsourceid><addsrcrecordid>eNp9kU1vEzEQhleoSK3a_oRKljgnjL12ds0JVEGJVIkLnK2xdxw57K6D7VDl3-MlBfXUk635eOadeZvmjsOaQw_vRdtyrvlmLUDItWg7qaV801wt8dWSuHjxv2xuc94DAG-lAg1XzX47F9olLGHesek4luBSKJQCsoFcyCHObMKfSxbngR1SmF044MhcnA5xprnUOI6nHPIHhiyfcqGp0hwbFwyWYyKW6Hegp5vmrccx0-3ze938-PL5-_3X1eO3h-39p8eVa4UuK603UgtuFXYaxUAA2lKPZIla7DoruBcOlUSPttO6E-CttYNySkHPHbTXzfbMHSLuTVU8YTqZiMH8DcS0M5iqwpEMF6DUxirtFUjnwQ5aeRIIPbq-yqmsd2fWIcVfR8rF7OMx1YWzabmsl-dK6lqlzlUuxZwT-f9TOZjFJfPPJbO4ZJ5dqn0fz31h9jFN-BTTOJiCpzEmn7BeehnzKuIP_OWazQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3143111549</pqid></control><display><type>article</type><title>Integrating multicriteria decision making and principal component analysis: a systematic literature review</title><source>Taylor & Francis Open Access</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Costa, Arthur Pinheiro de Araújo ; Choren, Ricardo ; Pereira, Daniel Augusto de Moura ; Terra, Adilson Vilarinho ; Costa, Igor Pinheiro de Araújo ; Junior, Claudio de Souza Rocha ; Santos, Marcos dos ; Gomes, Carlos Francisco Simões ; Moreira, Miguel Ângelo Lellis</creator><creatorcontrib>Costa, Arthur Pinheiro de Araújo ; Choren, Ricardo ; Pereira, Daniel Augusto de Moura ; Terra, Adilson Vilarinho ; Costa, Igor Pinheiro de Araújo ; Junior, Claudio de Souza Rocha ; Santos, Marcos dos ; Gomes, Carlos Francisco Simões ; Moreira, Miguel Ângelo Lellis</creatorcontrib><description>Decision-support methods are crucial for analyzing complex alternatives and criteria in today's data-driven world. This Systematic Literature Review (SLR) explores and synthesizes knowledge about decision support methodologies that integrate Multicriteria Decision Making (MCDM) and Principal Component Analysis (PCA), an unsupervised Machine Learning (ML) technique. Both techniques optimize complex decisions by combining multiple criteria and dimensional data analysis. Focusing on performance evaluations, criterion weighting, and validation testing, this review identifies significant gaps in existing methodologies. These include the lack of consideration for non-beneficial criteria in PCA, insufficient validation tests in over half of the studies, and the non-use of communalities (the contribution of each criterion to the main factors) in decision support approaches. Additionally, this SLR offers a comprehensive quantitative overview, analyzing data from the Scopus, IEEE, and Web of Science databases and identifying 16 relevant studies. Furthermore, the scarcity of systematic reviews integrating MCDM and PCA techniques impedes evidence-based decision-making practices and theoretical evolution. This is particularly crucial as ML and data analysis advance rapidly, requiring models that reflect technological innovations. This article addresses this gap in the literature by providing an analysis of decision support methods and guiding further improvement in this field.</description><identifier>ISSN: 2331-1916</identifier><identifier>EISSN: 2331-1916</identifier><identifier>DOI: 10.1080/23311916.2024.2374944</identifier><language>eng</language><publisher>Abingdon: Cogent</publisher><subject>Applied Mathematics ; Data analysis ; Decision making ; decision support methods ; Dimensional analysis ; Dr Jenhui Chen, Computer Science and Information Engineering, Chang Gung University, Taoyuan, Taiwan ; Literature reviews ; Machine learning ; Mathematical Modeling ; Multicriteria decision-making ; Multiple criteria decision making ; Multiple criterion ; Operations Research ; Performance evaluation ; principal component analysis ; Principal components analysis ; Systematic review ; Unsupervised learning</subject><ispartof>Cogent engineering, 2024-12, Vol.11 (1)</ispartof><rights>2024 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group 2024</rights><rights>2024 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c329t-9964921b5a79a2de009be8aebee3a77b21f2ca54afab799720fbbbd5c55081c03</cites><orcidid>0000-0003-1533-5535 ; 0000-0003-1760-2553 ; 0000-0003-4081-2647 ; 0000-0002-6865-0275 ; 0000-0002-7426-3976 ; 0000-0001-9892-6327 ; 0000-0002-7951-6098 ; 0000-0002-5179-1047 ; 0000-0003-4596-0649</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/23311916.2024.2374944$$EPDF$$P50$$Ginformaworld$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1080/23311916.2024.2374944$$EHTML$$P50$$Ginformaworld$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,27481,27903,27904,59119,59120</link.rule.ids></links><search><creatorcontrib>Costa, Arthur Pinheiro de Araújo</creatorcontrib><creatorcontrib>Choren, Ricardo</creatorcontrib><creatorcontrib>Pereira, Daniel Augusto de Moura</creatorcontrib><creatorcontrib>Terra, Adilson Vilarinho</creatorcontrib><creatorcontrib>Costa, Igor Pinheiro de Araújo</creatorcontrib><creatorcontrib>Junior, Claudio de Souza Rocha</creatorcontrib><creatorcontrib>Santos, Marcos dos</creatorcontrib><creatorcontrib>Gomes, Carlos Francisco Simões</creatorcontrib><creatorcontrib>Moreira, Miguel Ângelo Lellis</creatorcontrib><title>Integrating multicriteria decision making and principal component analysis: a systematic literature review</title><title>Cogent engineering</title><description>Decision-support methods are crucial for analyzing complex alternatives and criteria in today's data-driven world. This Systematic Literature Review (SLR) explores and synthesizes knowledge about decision support methodologies that integrate Multicriteria Decision Making (MCDM) and Principal Component Analysis (PCA), an unsupervised Machine Learning (ML) technique. Both techniques optimize complex decisions by combining multiple criteria and dimensional data analysis. Focusing on performance evaluations, criterion weighting, and validation testing, this review identifies significant gaps in existing methodologies. These include the lack of consideration for non-beneficial criteria in PCA, insufficient validation tests in over half of the studies, and the non-use of communalities (the contribution of each criterion to the main factors) in decision support approaches. Additionally, this SLR offers a comprehensive quantitative overview, analyzing data from the Scopus, IEEE, and Web of Science databases and identifying 16 relevant studies. Furthermore, the scarcity of systematic reviews integrating MCDM and PCA techniques impedes evidence-based decision-making practices and theoretical evolution. This is particularly crucial as ML and data analysis advance rapidly, requiring models that reflect technological innovations. This article addresses this gap in the literature by providing an analysis of decision support methods and guiding further improvement in this field.</description><subject>Applied Mathematics</subject><subject>Data analysis</subject><subject>Decision making</subject><subject>decision support methods</subject><subject>Dimensional analysis</subject><subject>Dr Jenhui Chen, Computer Science and Information Engineering, Chang Gung University, Taoyuan, Taiwan</subject><subject>Literature reviews</subject><subject>Machine learning</subject><subject>Mathematical Modeling</subject><subject>Multicriteria decision-making</subject><subject>Multiple criteria decision making</subject><subject>Multiple criterion</subject><subject>Operations Research</subject><subject>Performance evaluation</subject><subject>principal component analysis</subject><subject>Principal components analysis</subject><subject>Systematic review</subject><subject>Unsupervised learning</subject><issn>2331-1916</issn><issn>2331-1916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>0YH</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNp9kU1vEzEQhleoSK3a_oRKljgnjL12ds0JVEGJVIkLnK2xdxw57K6D7VDl3-MlBfXUk635eOadeZvmjsOaQw_vRdtyrvlmLUDItWg7qaV801wt8dWSuHjxv2xuc94DAG-lAg1XzX47F9olLGHesek4luBSKJQCsoFcyCHObMKfSxbngR1SmF044MhcnA5xprnUOI6nHPIHhiyfcqGp0hwbFwyWYyKW6Hegp5vmrccx0-3ze938-PL5-_3X1eO3h-39p8eVa4UuK603UgtuFXYaxUAA2lKPZIla7DoruBcOlUSPttO6E-CttYNySkHPHbTXzfbMHSLuTVU8YTqZiMH8DcS0M5iqwpEMF6DUxirtFUjnwQ5aeRIIPbq-yqmsd2fWIcVfR8rF7OMx1YWzabmsl-dK6lqlzlUuxZwT-f9TOZjFJfPPJbO4ZJ5dqn0fz31h9jFN-BTTOJiCpzEmn7BeehnzKuIP_OWazQ</recordid><startdate>20241231</startdate><enddate>20241231</enddate><creator>Costa, Arthur Pinheiro de Araújo</creator><creator>Choren, Ricardo</creator><creator>Pereira, Daniel Augusto de Moura</creator><creator>Terra, Adilson Vilarinho</creator><creator>Costa, Igor Pinheiro de Araújo</creator><creator>Junior, Claudio de Souza Rocha</creator><creator>Santos, Marcos dos</creator><creator>Gomes, Carlos Francisco Simões</creator><creator>Moreira, Miguel Ângelo Lellis</creator><general>Cogent</general><general>Taylor & Francis Ltd</general><general>Taylor & Francis Group</general><scope>0YH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>COVID</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-1533-5535</orcidid><orcidid>https://orcid.org/0000-0003-1760-2553</orcidid><orcidid>https://orcid.org/0000-0003-4081-2647</orcidid><orcidid>https://orcid.org/0000-0002-6865-0275</orcidid><orcidid>https://orcid.org/0000-0002-7426-3976</orcidid><orcidid>https://orcid.org/0000-0001-9892-6327</orcidid><orcidid>https://orcid.org/0000-0002-7951-6098</orcidid><orcidid>https://orcid.org/0000-0002-5179-1047</orcidid><orcidid>https://orcid.org/0000-0003-4596-0649</orcidid></search><sort><creationdate>20241231</creationdate><title>Integrating multicriteria decision making and principal component analysis: a systematic literature review</title><author>Costa, Arthur Pinheiro de Araújo ; Choren, Ricardo ; Pereira, Daniel Augusto de Moura ; Terra, Adilson Vilarinho ; Costa, Igor Pinheiro de Araújo ; Junior, Claudio de Souza Rocha ; Santos, Marcos dos ; Gomes, Carlos Francisco Simões ; Moreira, Miguel Ângelo Lellis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c329t-9964921b5a79a2de009be8aebee3a77b21f2ca54afab799720fbbbd5c55081c03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Applied Mathematics</topic><topic>Data analysis</topic><topic>Decision making</topic><topic>decision support methods</topic><topic>Dimensional analysis</topic><topic>Dr Jenhui Chen, Computer Science and Information Engineering, Chang Gung University, Taoyuan, Taiwan</topic><topic>Literature reviews</topic><topic>Machine learning</topic><topic>Mathematical Modeling</topic><topic>Multicriteria decision-making</topic><topic>Multiple criteria decision making</topic><topic>Multiple criterion</topic><topic>Operations Research</topic><topic>Performance evaluation</topic><topic>principal component analysis</topic><topic>Principal components analysis</topic><topic>Systematic review</topic><topic>Unsupervised learning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Costa, Arthur Pinheiro de Araújo</creatorcontrib><creatorcontrib>Choren, Ricardo</creatorcontrib><creatorcontrib>Pereira, Daniel Augusto de Moura</creatorcontrib><creatorcontrib>Terra, Adilson Vilarinho</creatorcontrib><creatorcontrib>Costa, Igor Pinheiro de Araújo</creatorcontrib><creatorcontrib>Junior, Claudio de Souza Rocha</creatorcontrib><creatorcontrib>Santos, Marcos dos</creatorcontrib><creatorcontrib>Gomes, Carlos Francisco Simões</creatorcontrib><creatorcontrib>Moreira, Miguel Ângelo Lellis</creatorcontrib><collection>Taylor & Francis Open Access</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Cogent engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Costa, Arthur Pinheiro de Araújo</au><au>Choren, Ricardo</au><au>Pereira, Daniel Augusto de Moura</au><au>Terra, Adilson Vilarinho</au><au>Costa, Igor Pinheiro de Araújo</au><au>Junior, Claudio de Souza Rocha</au><au>Santos, Marcos dos</au><au>Gomes, Carlos Francisco Simões</au><au>Moreira, Miguel Ângelo Lellis</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Integrating multicriteria decision making and principal component analysis: a systematic literature review</atitle><jtitle>Cogent engineering</jtitle><date>2024-12-31</date><risdate>2024</risdate><volume>11</volume><issue>1</issue><issn>2331-1916</issn><eissn>2331-1916</eissn><abstract>Decision-support methods are crucial for analyzing complex alternatives and criteria in today's data-driven world. This Systematic Literature Review (SLR) explores and synthesizes knowledge about decision support methodologies that integrate Multicriteria Decision Making (MCDM) and Principal Component Analysis (PCA), an unsupervised Machine Learning (ML) technique. Both techniques optimize complex decisions by combining multiple criteria and dimensional data analysis. Focusing on performance evaluations, criterion weighting, and validation testing, this review identifies significant gaps in existing methodologies. These include the lack of consideration for non-beneficial criteria in PCA, insufficient validation tests in over half of the studies, and the non-use of communalities (the contribution of each criterion to the main factors) in decision support approaches. Additionally, this SLR offers a comprehensive quantitative overview, analyzing data from the Scopus, IEEE, and Web of Science databases and identifying 16 relevant studies. Furthermore, the scarcity of systematic reviews integrating MCDM and PCA techniques impedes evidence-based decision-making practices and theoretical evolution. This is particularly crucial as ML and data analysis advance rapidly, requiring models that reflect technological innovations. This article addresses this gap in the literature by providing an analysis of decision support methods and guiding further improvement in this field.</abstract><cop>Abingdon</cop><pub>Cogent</pub><doi>10.1080/23311916.2024.2374944</doi><orcidid>https://orcid.org/0000-0003-1533-5535</orcidid><orcidid>https://orcid.org/0000-0003-1760-2553</orcidid><orcidid>https://orcid.org/0000-0003-4081-2647</orcidid><orcidid>https://orcid.org/0000-0002-6865-0275</orcidid><orcidid>https://orcid.org/0000-0002-7426-3976</orcidid><orcidid>https://orcid.org/0000-0001-9892-6327</orcidid><orcidid>https://orcid.org/0000-0002-7951-6098</orcidid><orcidid>https://orcid.org/0000-0002-5179-1047</orcidid><orcidid>https://orcid.org/0000-0003-4596-0649</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2331-1916 |
ispartof | Cogent engineering, 2024-12, Vol.11 (1) |
issn | 2331-1916 2331-1916 |
language | eng |
recordid | cdi_proquest_journals_3143111549 |
source | Taylor & Francis Open Access; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Applied Mathematics Data analysis Decision making decision support methods Dimensional analysis Dr Jenhui Chen, Computer Science and Information Engineering, Chang Gung University, Taoyuan, Taiwan Literature reviews Machine learning Mathematical Modeling Multicriteria decision-making Multiple criteria decision making Multiple criterion Operations Research Performance evaluation principal component analysis Principal components analysis Systematic review Unsupervised learning |
title | Integrating multicriteria decision making and principal component analysis: a systematic literature review |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T00%3A39%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Integrating%20multicriteria%20decision%20making%20and%20principal%20component%20analysis:%20a%20systematic%20literature%20review&rft.jtitle=Cogent%20engineering&rft.au=Costa,%20Arthur%20Pinheiro%20de%20Ara%C3%BAjo&rft.date=2024-12-31&rft.volume=11&rft.issue=1&rft.issn=2331-1916&rft.eissn=2331-1916&rft_id=info:doi/10.1080/23311916.2024.2374944&rft_dat=%3Cproquest_infor%3E3143111549%3C/proquest_infor%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3143111549&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_120556b59f504cf0bd95fe2a08ac8c32&rfr_iscdi=true |