Integrating multicriteria decision making and principal component analysis: a systematic literature review

Decision-support methods are crucial for analyzing complex alternatives and criteria in today's data-driven world. This Systematic Literature Review (SLR) explores and synthesizes knowledge about decision support methodologies that integrate Multicriteria Decision Making (MCDM) and Principal Co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cogent engineering 2024-12, Vol.11 (1)
Hauptverfasser: Costa, Arthur Pinheiro de Araújo, Choren, Ricardo, Pereira, Daniel Augusto de Moura, Terra, Adilson Vilarinho, Costa, Igor Pinheiro de Araújo, Junior, Claudio de Souza Rocha, Santos, Marcos dos, Gomes, Carlos Francisco Simões, Moreira, Miguel Ângelo Lellis
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title Cogent engineering
container_volume 11
creator Costa, Arthur Pinheiro de Araújo
Choren, Ricardo
Pereira, Daniel Augusto de Moura
Terra, Adilson Vilarinho
Costa, Igor Pinheiro de Araújo
Junior, Claudio de Souza Rocha
Santos, Marcos dos
Gomes, Carlos Francisco Simões
Moreira, Miguel Ângelo Lellis
description Decision-support methods are crucial for analyzing complex alternatives and criteria in today's data-driven world. This Systematic Literature Review (SLR) explores and synthesizes knowledge about decision support methodologies that integrate Multicriteria Decision Making (MCDM) and Principal Component Analysis (PCA), an unsupervised Machine Learning (ML) technique. Both techniques optimize complex decisions by combining multiple criteria and dimensional data analysis. Focusing on performance evaluations, criterion weighting, and validation testing, this review identifies significant gaps in existing methodologies. These include the lack of consideration for non-beneficial criteria in PCA, insufficient validation tests in over half of the studies, and the non-use of communalities (the contribution of each criterion to the main factors) in decision support approaches. Additionally, this SLR offers a comprehensive quantitative overview, analyzing data from the Scopus, IEEE, and Web of Science databases and identifying 16 relevant studies. Furthermore, the scarcity of systematic reviews integrating MCDM and PCA techniques impedes evidence-based decision-making practices and theoretical evolution. This is particularly crucial as ML and data analysis advance rapidly, requiring models that reflect technological innovations. This article addresses this gap in the literature by providing an analysis of decision support methods and guiding further improvement in this field.
doi_str_mv 10.1080/23311916.2024.2374944
format Article
fullrecord <record><control><sourceid>proquest_infor</sourceid><recordid>TN_cdi_proquest_journals_3143111549</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_120556b59f504cf0bd95fe2a08ac8c32</doaj_id><sourcerecordid>3143111549</sourcerecordid><originalsourceid>FETCH-LOGICAL-c329t-9964921b5a79a2de009be8aebee3a77b21f2ca54afab799720fbbbd5c55081c03</originalsourceid><addsrcrecordid>eNp9kU1vEzEQhleoSK3a_oRKljgnjL12ds0JVEGJVIkLnK2xdxw57K6D7VDl3-MlBfXUk635eOadeZvmjsOaQw_vRdtyrvlmLUDItWg7qaV801wt8dWSuHjxv2xuc94DAG-lAg1XzX47F9olLGHesek4luBSKJQCsoFcyCHObMKfSxbngR1SmF044MhcnA5xprnUOI6nHPIHhiyfcqGp0hwbFwyWYyKW6Hegp5vmrccx0-3ze938-PL5-_3X1eO3h-39p8eVa4UuK603UgtuFXYaxUAA2lKPZIla7DoruBcOlUSPttO6E-CttYNySkHPHbTXzfbMHSLuTVU8YTqZiMH8DcS0M5iqwpEMF6DUxirtFUjnwQ5aeRIIPbq-yqmsd2fWIcVfR8rF7OMx1YWzabmsl-dK6lqlzlUuxZwT-f9TOZjFJfPPJbO4ZJ5dqn0fz31h9jFN-BTTOJiCpzEmn7BeehnzKuIP_OWazQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3143111549</pqid></control><display><type>article</type><title>Integrating multicriteria decision making and principal component analysis: a systematic literature review</title><source>Taylor &amp; Francis Open Access</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Costa, Arthur Pinheiro de Araújo ; Choren, Ricardo ; Pereira, Daniel Augusto de Moura ; Terra, Adilson Vilarinho ; Costa, Igor Pinheiro de Araújo ; Junior, Claudio de Souza Rocha ; Santos, Marcos dos ; Gomes, Carlos Francisco Simões ; Moreira, Miguel Ângelo Lellis</creator><creatorcontrib>Costa, Arthur Pinheiro de Araújo ; Choren, Ricardo ; Pereira, Daniel Augusto de Moura ; Terra, Adilson Vilarinho ; Costa, Igor Pinheiro de Araújo ; Junior, Claudio de Souza Rocha ; Santos, Marcos dos ; Gomes, Carlos Francisco Simões ; Moreira, Miguel Ângelo Lellis</creatorcontrib><description>Decision-support methods are crucial for analyzing complex alternatives and criteria in today's data-driven world. This Systematic Literature Review (SLR) explores and synthesizes knowledge about decision support methodologies that integrate Multicriteria Decision Making (MCDM) and Principal Component Analysis (PCA), an unsupervised Machine Learning (ML) technique. Both techniques optimize complex decisions by combining multiple criteria and dimensional data analysis. Focusing on performance evaluations, criterion weighting, and validation testing, this review identifies significant gaps in existing methodologies. These include the lack of consideration for non-beneficial criteria in PCA, insufficient validation tests in over half of the studies, and the non-use of communalities (the contribution of each criterion to the main factors) in decision support approaches. Additionally, this SLR offers a comprehensive quantitative overview, analyzing data from the Scopus, IEEE, and Web of Science databases and identifying 16 relevant studies. Furthermore, the scarcity of systematic reviews integrating MCDM and PCA techniques impedes evidence-based decision-making practices and theoretical evolution. This is particularly crucial as ML and data analysis advance rapidly, requiring models that reflect technological innovations. This article addresses this gap in the literature by providing an analysis of decision support methods and guiding further improvement in this field.</description><identifier>ISSN: 2331-1916</identifier><identifier>EISSN: 2331-1916</identifier><identifier>DOI: 10.1080/23311916.2024.2374944</identifier><language>eng</language><publisher>Abingdon: Cogent</publisher><subject>Applied Mathematics ; Data analysis ; Decision making ; decision support methods ; Dimensional analysis ; Dr Jenhui Chen, Computer Science and Information Engineering, Chang Gung University, Taoyuan, Taiwan ; Literature reviews ; Machine learning ; Mathematical Modeling ; Multicriteria decision-making ; Multiple criteria decision making ; Multiple criterion ; Operations Research ; Performance evaluation ; principal component analysis ; Principal components analysis ; Systematic review ; Unsupervised learning</subject><ispartof>Cogent engineering, 2024-12, Vol.11 (1)</ispartof><rights>2024 The Author(s). Published by Informa UK Limited, trading as Taylor &amp; Francis Group 2024</rights><rights>2024 The Author(s). Published by Informa UK Limited, trading as Taylor &amp; Francis Group. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c329t-9964921b5a79a2de009be8aebee3a77b21f2ca54afab799720fbbbd5c55081c03</cites><orcidid>0000-0003-1533-5535 ; 0000-0003-1760-2553 ; 0000-0003-4081-2647 ; 0000-0002-6865-0275 ; 0000-0002-7426-3976 ; 0000-0001-9892-6327 ; 0000-0002-7951-6098 ; 0000-0002-5179-1047 ; 0000-0003-4596-0649</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/23311916.2024.2374944$$EPDF$$P50$$Ginformaworld$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1080/23311916.2024.2374944$$EHTML$$P50$$Ginformaworld$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,27481,27903,27904,59119,59120</link.rule.ids></links><search><creatorcontrib>Costa, Arthur Pinheiro de Araújo</creatorcontrib><creatorcontrib>Choren, Ricardo</creatorcontrib><creatorcontrib>Pereira, Daniel Augusto de Moura</creatorcontrib><creatorcontrib>Terra, Adilson Vilarinho</creatorcontrib><creatorcontrib>Costa, Igor Pinheiro de Araújo</creatorcontrib><creatorcontrib>Junior, Claudio de Souza Rocha</creatorcontrib><creatorcontrib>Santos, Marcos dos</creatorcontrib><creatorcontrib>Gomes, Carlos Francisco Simões</creatorcontrib><creatorcontrib>Moreira, Miguel Ângelo Lellis</creatorcontrib><title>Integrating multicriteria decision making and principal component analysis: a systematic literature review</title><title>Cogent engineering</title><description>Decision-support methods are crucial for analyzing complex alternatives and criteria in today's data-driven world. This Systematic Literature Review (SLR) explores and synthesizes knowledge about decision support methodologies that integrate Multicriteria Decision Making (MCDM) and Principal Component Analysis (PCA), an unsupervised Machine Learning (ML) technique. Both techniques optimize complex decisions by combining multiple criteria and dimensional data analysis. Focusing on performance evaluations, criterion weighting, and validation testing, this review identifies significant gaps in existing methodologies. These include the lack of consideration for non-beneficial criteria in PCA, insufficient validation tests in over half of the studies, and the non-use of communalities (the contribution of each criterion to the main factors) in decision support approaches. Additionally, this SLR offers a comprehensive quantitative overview, analyzing data from the Scopus, IEEE, and Web of Science databases and identifying 16 relevant studies. Furthermore, the scarcity of systematic reviews integrating MCDM and PCA techniques impedes evidence-based decision-making practices and theoretical evolution. This is particularly crucial as ML and data analysis advance rapidly, requiring models that reflect technological innovations. This article addresses this gap in the literature by providing an analysis of decision support methods and guiding further improvement in this field.</description><subject>Applied Mathematics</subject><subject>Data analysis</subject><subject>Decision making</subject><subject>decision support methods</subject><subject>Dimensional analysis</subject><subject>Dr Jenhui Chen, Computer Science and Information Engineering, Chang Gung University, Taoyuan, Taiwan</subject><subject>Literature reviews</subject><subject>Machine learning</subject><subject>Mathematical Modeling</subject><subject>Multicriteria decision-making</subject><subject>Multiple criteria decision making</subject><subject>Multiple criterion</subject><subject>Operations Research</subject><subject>Performance evaluation</subject><subject>principal component analysis</subject><subject>Principal components analysis</subject><subject>Systematic review</subject><subject>Unsupervised learning</subject><issn>2331-1916</issn><issn>2331-1916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>0YH</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNp9kU1vEzEQhleoSK3a_oRKljgnjL12ds0JVEGJVIkLnK2xdxw57K6D7VDl3-MlBfXUk635eOadeZvmjsOaQw_vRdtyrvlmLUDItWg7qaV801wt8dWSuHjxv2xuc94DAG-lAg1XzX47F9olLGHesek4luBSKJQCsoFcyCHObMKfSxbngR1SmF044MhcnA5xprnUOI6nHPIHhiyfcqGp0hwbFwyWYyKW6Hegp5vmrccx0-3ze938-PL5-_3X1eO3h-39p8eVa4UuK603UgtuFXYaxUAA2lKPZIla7DoruBcOlUSPttO6E-CttYNySkHPHbTXzfbMHSLuTVU8YTqZiMH8DcS0M5iqwpEMF6DUxirtFUjnwQ5aeRIIPbq-yqmsd2fWIcVfR8rF7OMx1YWzabmsl-dK6lqlzlUuxZwT-f9TOZjFJfPPJbO4ZJ5dqn0fz31h9jFN-BTTOJiCpzEmn7BeehnzKuIP_OWazQ</recordid><startdate>20241231</startdate><enddate>20241231</enddate><creator>Costa, Arthur Pinheiro de Araújo</creator><creator>Choren, Ricardo</creator><creator>Pereira, Daniel Augusto de Moura</creator><creator>Terra, Adilson Vilarinho</creator><creator>Costa, Igor Pinheiro de Araújo</creator><creator>Junior, Claudio de Souza Rocha</creator><creator>Santos, Marcos dos</creator><creator>Gomes, Carlos Francisco Simões</creator><creator>Moreira, Miguel Ângelo Lellis</creator><general>Cogent</general><general>Taylor &amp; Francis Ltd</general><general>Taylor &amp; Francis Group</general><scope>0YH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>COVID</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-1533-5535</orcidid><orcidid>https://orcid.org/0000-0003-1760-2553</orcidid><orcidid>https://orcid.org/0000-0003-4081-2647</orcidid><orcidid>https://orcid.org/0000-0002-6865-0275</orcidid><orcidid>https://orcid.org/0000-0002-7426-3976</orcidid><orcidid>https://orcid.org/0000-0001-9892-6327</orcidid><orcidid>https://orcid.org/0000-0002-7951-6098</orcidid><orcidid>https://orcid.org/0000-0002-5179-1047</orcidid><orcidid>https://orcid.org/0000-0003-4596-0649</orcidid></search><sort><creationdate>20241231</creationdate><title>Integrating multicriteria decision making and principal component analysis: a systematic literature review</title><author>Costa, Arthur Pinheiro de Araújo ; Choren, Ricardo ; Pereira, Daniel Augusto de Moura ; Terra, Adilson Vilarinho ; Costa, Igor Pinheiro de Araújo ; Junior, Claudio de Souza Rocha ; Santos, Marcos dos ; Gomes, Carlos Francisco Simões ; Moreira, Miguel Ângelo Lellis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c329t-9964921b5a79a2de009be8aebee3a77b21f2ca54afab799720fbbbd5c55081c03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Applied Mathematics</topic><topic>Data analysis</topic><topic>Decision making</topic><topic>decision support methods</topic><topic>Dimensional analysis</topic><topic>Dr Jenhui Chen, Computer Science and Information Engineering, Chang Gung University, Taoyuan, Taiwan</topic><topic>Literature reviews</topic><topic>Machine learning</topic><topic>Mathematical Modeling</topic><topic>Multicriteria decision-making</topic><topic>Multiple criteria decision making</topic><topic>Multiple criterion</topic><topic>Operations Research</topic><topic>Performance evaluation</topic><topic>principal component analysis</topic><topic>Principal components analysis</topic><topic>Systematic review</topic><topic>Unsupervised learning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Costa, Arthur Pinheiro de Araújo</creatorcontrib><creatorcontrib>Choren, Ricardo</creatorcontrib><creatorcontrib>Pereira, Daniel Augusto de Moura</creatorcontrib><creatorcontrib>Terra, Adilson Vilarinho</creatorcontrib><creatorcontrib>Costa, Igor Pinheiro de Araújo</creatorcontrib><creatorcontrib>Junior, Claudio de Souza Rocha</creatorcontrib><creatorcontrib>Santos, Marcos dos</creatorcontrib><creatorcontrib>Gomes, Carlos Francisco Simões</creatorcontrib><creatorcontrib>Moreira, Miguel Ângelo Lellis</creatorcontrib><collection>Taylor &amp; Francis Open Access</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Cogent engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Costa, Arthur Pinheiro de Araújo</au><au>Choren, Ricardo</au><au>Pereira, Daniel Augusto de Moura</au><au>Terra, Adilson Vilarinho</au><au>Costa, Igor Pinheiro de Araújo</au><au>Junior, Claudio de Souza Rocha</au><au>Santos, Marcos dos</au><au>Gomes, Carlos Francisco Simões</au><au>Moreira, Miguel Ângelo Lellis</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Integrating multicriteria decision making and principal component analysis: a systematic literature review</atitle><jtitle>Cogent engineering</jtitle><date>2024-12-31</date><risdate>2024</risdate><volume>11</volume><issue>1</issue><issn>2331-1916</issn><eissn>2331-1916</eissn><abstract>Decision-support methods are crucial for analyzing complex alternatives and criteria in today's data-driven world. This Systematic Literature Review (SLR) explores and synthesizes knowledge about decision support methodologies that integrate Multicriteria Decision Making (MCDM) and Principal Component Analysis (PCA), an unsupervised Machine Learning (ML) technique. Both techniques optimize complex decisions by combining multiple criteria and dimensional data analysis. Focusing on performance evaluations, criterion weighting, and validation testing, this review identifies significant gaps in existing methodologies. These include the lack of consideration for non-beneficial criteria in PCA, insufficient validation tests in over half of the studies, and the non-use of communalities (the contribution of each criterion to the main factors) in decision support approaches. Additionally, this SLR offers a comprehensive quantitative overview, analyzing data from the Scopus, IEEE, and Web of Science databases and identifying 16 relevant studies. Furthermore, the scarcity of systematic reviews integrating MCDM and PCA techniques impedes evidence-based decision-making practices and theoretical evolution. This is particularly crucial as ML and data analysis advance rapidly, requiring models that reflect technological innovations. This article addresses this gap in the literature by providing an analysis of decision support methods and guiding further improvement in this field.</abstract><cop>Abingdon</cop><pub>Cogent</pub><doi>10.1080/23311916.2024.2374944</doi><orcidid>https://orcid.org/0000-0003-1533-5535</orcidid><orcidid>https://orcid.org/0000-0003-1760-2553</orcidid><orcidid>https://orcid.org/0000-0003-4081-2647</orcidid><orcidid>https://orcid.org/0000-0002-6865-0275</orcidid><orcidid>https://orcid.org/0000-0002-7426-3976</orcidid><orcidid>https://orcid.org/0000-0001-9892-6327</orcidid><orcidid>https://orcid.org/0000-0002-7951-6098</orcidid><orcidid>https://orcid.org/0000-0002-5179-1047</orcidid><orcidid>https://orcid.org/0000-0003-4596-0649</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2331-1916
ispartof Cogent engineering, 2024-12, Vol.11 (1)
issn 2331-1916
2331-1916
language eng
recordid cdi_proquest_journals_3143111549
source Taylor & Francis Open Access; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Applied Mathematics
Data analysis
Decision making
decision support methods
Dimensional analysis
Dr Jenhui Chen, Computer Science and Information Engineering, Chang Gung University, Taoyuan, Taiwan
Literature reviews
Machine learning
Mathematical Modeling
Multicriteria decision-making
Multiple criteria decision making
Multiple criterion
Operations Research
Performance evaluation
principal component analysis
Principal components analysis
Systematic review
Unsupervised learning
title Integrating multicriteria decision making and principal component analysis: a systematic literature review
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T00%3A39%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Integrating%20multicriteria%20decision%20making%20and%20principal%20component%20analysis:%20a%20systematic%20literature%20review&rft.jtitle=Cogent%20engineering&rft.au=Costa,%20Arthur%20Pinheiro%20de%20Ara%C3%BAjo&rft.date=2024-12-31&rft.volume=11&rft.issue=1&rft.issn=2331-1916&rft.eissn=2331-1916&rft_id=info:doi/10.1080/23311916.2024.2374944&rft_dat=%3Cproquest_infor%3E3143111549%3C/proquest_infor%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3143111549&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_120556b59f504cf0bd95fe2a08ac8c32&rfr_iscdi=true