Analysis of wave breaking on synthetic aperture radar at C-band during tropical cyclones
The purpose of our work is to analyze the effect of wave breaking on dual-polarized (vertical-vertical (VV) and vertical-horizontal (VH)) synthetic aperture radar (SAR) image in the C-band during tropical cyclones (TCs) based on the machine learning method. In this study, more than 1300 Sentinel-1 (...
Gespeichert in:
Veröffentlicht in: | Geo-spatial information science 2024-11, Vol.27 (6), p.2109-2122 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2122 |
---|---|
container_issue | 6 |
container_start_page | 2109 |
container_title | Geo-spatial information science |
container_volume | 27 |
creator | Hu, Yuyi Shao, Weizeng Wang, Xiaoqing Zuo, Juncheng Jiang, Xingwei |
description | The purpose of our work is to analyze the effect of wave breaking on dual-polarized (vertical-vertical (VV) and vertical-horizontal (VH)) synthetic aperture radar (SAR) image in the C-band during tropical cyclones (TCs) based on the machine learning method. In this study, more than 1300 Sentinel-1 (S-1) interferometric-wide (IW) and extra wide (EW) mode SAR images are collocated with wave simulations from the WAVEWATCH-III (WW3) model during 400 TCs. The validation of the significant wave height (SWH) simulated using the WW3 model against Jason-2 altimeter data. The winds for S-1 SAR images are reconstructed using wind retrievals in VV and VH polarization. The non-polarized (NP) contribution σ
wb
caused by wave breaking is assumed to be the result of the SAR-measured normalized radar cross-section (NRCS) σ
0
minus the Bragg resonant roughness σ
br
without the distortion of rain cells during TCs. The σ
br
is simulated by imputing wave spectra from the WW3 model into the theoretical backscattering model. It is found that the ratio (σ
wb
/σ
0
) in VV polarization is related to the wind speed, the wind direction relative with the flight orientation, and radar incidence angle. Following this rationale, the Adaptive Boosting (AdaBoost) model was used for the estimation of NP contribution σ
wb
during TCs and are implemented for more than 300 dual-polarized S-1 images to validate the model. It is found that for the comparison between the sum of simulation NRCS and SAR observations, the root mean squared error (RMSE) is 1.95 dB and the coefficient (COR) is 0.86, which is better than a 2.83 dB RMSE and a 0.67 COR by empirical model. It is concluded that the AdaBoost model has a good performance on NP component simulation during TCs. |
doi_str_mv | 10.1080/10095020.2023.2295467 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3143097927</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_ae56c0a2ad624256a1fc320a46f6a13b</doaj_id><sourcerecordid>3143097927</sourcerecordid><originalsourceid>FETCH-LOGICAL-c451t-de905aaf521964219c5505b408e05167035f10d20908d21d7b62d5003a0395c93</originalsourceid><addsrcrecordid>eNp9kU1r3DAQhk1poWnSn1AQ9OztSPLYq1vD0o9AoJcEchNjfSTeONZ25G3wv6_cTXvsZWYQz7wzo7eqPkjYSNjCJwlgEBRsFCi9Ucpg03avqjNpjK5Ron5d6sLUK_S2epfzHkCbRuNZdXc50bjkIYsUxTP9CqLnQI_DdC_SJPIyzQ9hHpygQ-D5yEEweWJBs9jVPU1e-COv8MzpMDgahVvcmKaQL6o3kcYc3r_k8-r265eb3ff6-se3q93lde0alHPtgwEkiqikaZsSHCJg38A2AMq2A41RgldgYOuV9F3fKo9lfSoXoDP6vLo66fpEe3vg4Yl4sYkG--ch8b0lLheMwVLA1gEp8q1qFLYko9MKqGljqXVftD6etA6cfh5Dnu0-Hbl8ULZaNhpMZ1RXKDxRjlPOHOK_qRLsaoj9a4hdDbEvhpS-z6e-YYqJn-g58ejtTMuYODJNbljH_FfiN79sj78</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3143097927</pqid></control><display><type>article</type><title>Analysis of wave breaking on synthetic aperture radar at C-band during tropical cyclones</title><source>Taylor & Francis Open Access</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>IngentaConnect Free/Open Access Journals</source><creator>Hu, Yuyi ; Shao, Weizeng ; Wang, Xiaoqing ; Zuo, Juncheng ; Jiang, Xingwei</creator><creatorcontrib>Hu, Yuyi ; Shao, Weizeng ; Wang, Xiaoqing ; Zuo, Juncheng ; Jiang, Xingwei</creatorcontrib><description>The purpose of our work is to analyze the effect of wave breaking on dual-polarized (vertical-vertical (VV) and vertical-horizontal (VH)) synthetic aperture radar (SAR) image in the C-band during tropical cyclones (TCs) based on the machine learning method. In this study, more than 1300 Sentinel-1 (S-1) interferometric-wide (IW) and extra wide (EW) mode SAR images are collocated with wave simulations from the WAVEWATCH-III (WW3) model during 400 TCs. The validation of the significant wave height (SWH) simulated using the WW3 model against Jason-2 altimeter data. The winds for S-1 SAR images are reconstructed using wind retrievals in VV and VH polarization. The non-polarized (NP) contribution σ
wb
caused by wave breaking is assumed to be the result of the SAR-measured normalized radar cross-section (NRCS) σ
0
minus the Bragg resonant roughness σ
br
without the distortion of rain cells during TCs. The σ
br
is simulated by imputing wave spectra from the WW3 model into the theoretical backscattering model. It is found that the ratio (σ
wb
/σ
0
) in VV polarization is related to the wind speed, the wind direction relative with the flight orientation, and radar incidence angle. Following this rationale, the Adaptive Boosting (AdaBoost) model was used for the estimation of NP contribution σ
wb
during TCs and are implemented for more than 300 dual-polarized S-1 images to validate the model. It is found that for the comparison between the sum of simulation NRCS and SAR observations, the root mean squared error (RMSE) is 1.95 dB and the coefficient (COR) is 0.86, which is better than a 2.83 dB RMSE and a 0.67 COR by empirical model. It is concluded that the AdaBoost model has a good performance on NP component simulation during TCs.</description><identifier>ISSN: 1009-5020</identifier><identifier>EISSN: 1993-5153</identifier><identifier>DOI: 10.1080/10095020.2023.2295467</identifier><language>eng</language><publisher>Wuhan: Taylor & Francis</publisher><subject>C band ; Cyclones ; Image reconstruction ; Incidence angle ; Inertia ; Machine learning ; Radar ; Radar cross sections ; Radar imaging ; Root-mean-square errors ; Synthetic aperture radar ; tropical cyclone ; Tropical cyclones ; Vertical polarization ; Wave analysis ; Wave breaking ; Wave height ; Wave spectra ; Wind ; Wind direction ; Wind speed</subject><ispartof>Geo-spatial information science, 2024-11, Vol.27 (6), p.2109-2122</ispartof><rights>2024 Wuhan University. Published by Informa UK Limited, trading as Taylor & Francis Group. 2024</rights><rights>2024 Wuhan University. Published by Informa UK Limited, trading as Taylor & Francis Group. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c451t-de905aaf521964219c5505b408e05167035f10d20908d21d7b62d5003a0395c93</citedby><cites>FETCH-LOGICAL-c451t-de905aaf521964219c5505b408e05167035f10d20908d21d7b62d5003a0395c93</cites><orcidid>0000-0003-3693-6217</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/10095020.2023.2295467$$EPDF$$P50$$Ginformaworld$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1080/10095020.2023.2295467$$EHTML$$P50$$Ginformaworld$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,861,2096,27483,27905,27906,59122,59123</link.rule.ids></links><search><creatorcontrib>Hu, Yuyi</creatorcontrib><creatorcontrib>Shao, Weizeng</creatorcontrib><creatorcontrib>Wang, Xiaoqing</creatorcontrib><creatorcontrib>Zuo, Juncheng</creatorcontrib><creatorcontrib>Jiang, Xingwei</creatorcontrib><title>Analysis of wave breaking on synthetic aperture radar at C-band during tropical cyclones</title><title>Geo-spatial information science</title><description>The purpose of our work is to analyze the effect of wave breaking on dual-polarized (vertical-vertical (VV) and vertical-horizontal (VH)) synthetic aperture radar (SAR) image in the C-band during tropical cyclones (TCs) based on the machine learning method. In this study, more than 1300 Sentinel-1 (S-1) interferometric-wide (IW) and extra wide (EW) mode SAR images are collocated with wave simulations from the WAVEWATCH-III (WW3) model during 400 TCs. The validation of the significant wave height (SWH) simulated using the WW3 model against Jason-2 altimeter data. The winds for S-1 SAR images are reconstructed using wind retrievals in VV and VH polarization. The non-polarized (NP) contribution σ
wb
caused by wave breaking is assumed to be the result of the SAR-measured normalized radar cross-section (NRCS) σ
0
minus the Bragg resonant roughness σ
br
without the distortion of rain cells during TCs. The σ
br
is simulated by imputing wave spectra from the WW3 model into the theoretical backscattering model. It is found that the ratio (σ
wb
/σ
0
) in VV polarization is related to the wind speed, the wind direction relative with the flight orientation, and radar incidence angle. Following this rationale, the Adaptive Boosting (AdaBoost) model was used for the estimation of NP contribution σ
wb
during TCs and are implemented for more than 300 dual-polarized S-1 images to validate the model. It is found that for the comparison between the sum of simulation NRCS and SAR observations, the root mean squared error (RMSE) is 1.95 dB and the coefficient (COR) is 0.86, which is better than a 2.83 dB RMSE and a 0.67 COR by empirical model. It is concluded that the AdaBoost model has a good performance on NP component simulation during TCs.</description><subject>C band</subject><subject>Cyclones</subject><subject>Image reconstruction</subject><subject>Incidence angle</subject><subject>Inertia</subject><subject>Machine learning</subject><subject>Radar</subject><subject>Radar cross sections</subject><subject>Radar imaging</subject><subject>Root-mean-square errors</subject><subject>Synthetic aperture radar</subject><subject>tropical cyclone</subject><subject>Tropical cyclones</subject><subject>Vertical polarization</subject><subject>Wave analysis</subject><subject>Wave breaking</subject><subject>Wave height</subject><subject>Wave spectra</subject><subject>Wind</subject><subject>Wind direction</subject><subject>Wind speed</subject><issn>1009-5020</issn><issn>1993-5153</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>0YH</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><sourceid>DOA</sourceid><recordid>eNp9kU1r3DAQhk1poWnSn1AQ9OztSPLYq1vD0o9AoJcEchNjfSTeONZ25G3wv6_cTXvsZWYQz7wzo7eqPkjYSNjCJwlgEBRsFCi9Ucpg03avqjNpjK5Ron5d6sLUK_S2epfzHkCbRuNZdXc50bjkIYsUxTP9CqLnQI_DdC_SJPIyzQ9hHpygQ-D5yEEweWJBs9jVPU1e-COv8MzpMDgahVvcmKaQL6o3kcYc3r_k8-r265eb3ff6-se3q93lde0alHPtgwEkiqikaZsSHCJg38A2AMq2A41RgldgYOuV9F3fKo9lfSoXoDP6vLo66fpEe3vg4Yl4sYkG--ch8b0lLheMwVLA1gEp8q1qFLYko9MKqGljqXVftD6etA6cfh5Dnu0-Hbl8ULZaNhpMZ1RXKDxRjlPOHOK_qRLsaoj9a4hdDbEvhpS-z6e-YYqJn-g58ejtTMuYODJNbljH_FfiN79sj78</recordid><startdate>20241101</startdate><enddate>20241101</enddate><creator>Hu, Yuyi</creator><creator>Shao, Weizeng</creator><creator>Wang, Xiaoqing</creator><creator>Zuo, Juncheng</creator><creator>Jiang, Xingwei</creator><general>Taylor & Francis</general><general>Taylor & Francis Ltd</general><general>Taylor & Francis Group</general><scope>0YH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7XB</scope><scope>8FD</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-3693-6217</orcidid></search><sort><creationdate>20241101</creationdate><title>Analysis of wave breaking on synthetic aperture radar at C-band during tropical cyclones</title><author>Hu, Yuyi ; Shao, Weizeng ; Wang, Xiaoqing ; Zuo, Juncheng ; Jiang, Xingwei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c451t-de905aaf521964219c5505b408e05167035f10d20908d21d7b62d5003a0395c93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>C band</topic><topic>Cyclones</topic><topic>Image reconstruction</topic><topic>Incidence angle</topic><topic>Inertia</topic><topic>Machine learning</topic><topic>Radar</topic><topic>Radar cross sections</topic><topic>Radar imaging</topic><topic>Root-mean-square errors</topic><topic>Synthetic aperture radar</topic><topic>tropical cyclone</topic><topic>Tropical cyclones</topic><topic>Vertical polarization</topic><topic>Wave analysis</topic><topic>Wave breaking</topic><topic>Wave height</topic><topic>Wave spectra</topic><topic>Wind</topic><topic>Wind direction</topic><topic>Wind speed</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hu, Yuyi</creatorcontrib><creatorcontrib>Shao, Weizeng</creatorcontrib><creatorcontrib>Wang, Xiaoqing</creatorcontrib><creatorcontrib>Zuo, Juncheng</creatorcontrib><creatorcontrib>Jiang, Xingwei</creatorcontrib><collection>Taylor & Francis Open Access</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Technology Research Database</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Geo-spatial information science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hu, Yuyi</au><au>Shao, Weizeng</au><au>Wang, Xiaoqing</au><au>Zuo, Juncheng</au><au>Jiang, Xingwei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis of wave breaking on synthetic aperture radar at C-band during tropical cyclones</atitle><jtitle>Geo-spatial information science</jtitle><date>2024-11-01</date><risdate>2024</risdate><volume>27</volume><issue>6</issue><spage>2109</spage><epage>2122</epage><pages>2109-2122</pages><issn>1009-5020</issn><eissn>1993-5153</eissn><abstract>The purpose of our work is to analyze the effect of wave breaking on dual-polarized (vertical-vertical (VV) and vertical-horizontal (VH)) synthetic aperture radar (SAR) image in the C-band during tropical cyclones (TCs) based on the machine learning method. In this study, more than 1300 Sentinel-1 (S-1) interferometric-wide (IW) and extra wide (EW) mode SAR images are collocated with wave simulations from the WAVEWATCH-III (WW3) model during 400 TCs. The validation of the significant wave height (SWH) simulated using the WW3 model against Jason-2 altimeter data. The winds for S-1 SAR images are reconstructed using wind retrievals in VV and VH polarization. The non-polarized (NP) contribution σ
wb
caused by wave breaking is assumed to be the result of the SAR-measured normalized radar cross-section (NRCS) σ
0
minus the Bragg resonant roughness σ
br
without the distortion of rain cells during TCs. The σ
br
is simulated by imputing wave spectra from the WW3 model into the theoretical backscattering model. It is found that the ratio (σ
wb
/σ
0
) in VV polarization is related to the wind speed, the wind direction relative with the flight orientation, and radar incidence angle. Following this rationale, the Adaptive Boosting (AdaBoost) model was used for the estimation of NP contribution σ
wb
during TCs and are implemented for more than 300 dual-polarized S-1 images to validate the model. It is found that for the comparison between the sum of simulation NRCS and SAR observations, the root mean squared error (RMSE) is 1.95 dB and the coefficient (COR) is 0.86, which is better than a 2.83 dB RMSE and a 0.67 COR by empirical model. It is concluded that the AdaBoost model has a good performance on NP component simulation during TCs.</abstract><cop>Wuhan</cop><pub>Taylor & Francis</pub><doi>10.1080/10095020.2023.2295467</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-3693-6217</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1009-5020 |
ispartof | Geo-spatial information science, 2024-11, Vol.27 (6), p.2109-2122 |
issn | 1009-5020 1993-5153 |
language | eng |
recordid | cdi_proquest_journals_3143097927 |
source | Taylor & Francis Open Access; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; IngentaConnect Free/Open Access Journals |
subjects | C band Cyclones Image reconstruction Incidence angle Inertia Machine learning Radar Radar cross sections Radar imaging Root-mean-square errors Synthetic aperture radar tropical cyclone Tropical cyclones Vertical polarization Wave analysis Wave breaking Wave height Wave spectra Wind Wind direction Wind speed |
title | Analysis of wave breaking on synthetic aperture radar at C-band during tropical cyclones |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T19%3A31%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20of%20wave%20breaking%20on%20synthetic%20aperture%20radar%20at%20C-band%20during%20tropical%20cyclones&rft.jtitle=Geo-spatial%20information%20science&rft.au=Hu,%20Yuyi&rft.date=2024-11-01&rft.volume=27&rft.issue=6&rft.spage=2109&rft.epage=2122&rft.pages=2109-2122&rft.issn=1009-5020&rft.eissn=1993-5153&rft_id=info:doi/10.1080/10095020.2023.2295467&rft_dat=%3Cproquest_cross%3E3143097927%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3143097927&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_ae56c0a2ad624256a1fc320a46f6a13b&rfr_iscdi=true |