Analysis of wave breaking on synthetic aperture radar at C-band during tropical cyclones

The purpose of our work is to analyze the effect of wave breaking on dual-polarized (vertical-vertical (VV) and vertical-horizontal (VH)) synthetic aperture radar (SAR) image in the C-band during tropical cyclones (TCs) based on the machine learning method. In this study, more than 1300 Sentinel-1 (...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geo-spatial information science 2024-11, Vol.27 (6), p.2109-2122
Hauptverfasser: Hu, Yuyi, Shao, Weizeng, Wang, Xiaoqing, Zuo, Juncheng, Jiang, Xingwei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2122
container_issue 6
container_start_page 2109
container_title Geo-spatial information science
container_volume 27
creator Hu, Yuyi
Shao, Weizeng
Wang, Xiaoqing
Zuo, Juncheng
Jiang, Xingwei
description The purpose of our work is to analyze the effect of wave breaking on dual-polarized (vertical-vertical (VV) and vertical-horizontal (VH)) synthetic aperture radar (SAR) image in the C-band during tropical cyclones (TCs) based on the machine learning method. In this study, more than 1300 Sentinel-1 (S-1) interferometric-wide (IW) and extra wide (EW) mode SAR images are collocated with wave simulations from the WAVEWATCH-III (WW3) model during 400 TCs. The validation of the significant wave height (SWH) simulated using the WW3 model against Jason-2 altimeter data. The winds for S-1 SAR images are reconstructed using wind retrievals in VV and VH polarization. The non-polarized (NP) contribution σ wb caused by wave breaking is assumed to be the result of the SAR-measured normalized radar cross-section (NRCS) σ 0 minus the Bragg resonant roughness σ br without the distortion of rain cells during TCs. The σ br is simulated by imputing wave spectra from the WW3 model into the theoretical backscattering model. It is found that the ratio (σ wb /σ 0 ) in VV polarization is related to the wind speed, the wind direction relative with the flight orientation, and radar incidence angle. Following this rationale, the Adaptive Boosting (AdaBoost) model was used for the estimation of NP contribution σ wb during TCs and are implemented for more than 300 dual-polarized S-1 images to validate the model. It is found that for the comparison between the sum of simulation NRCS and SAR observations, the root mean squared error (RMSE) is 1.95 dB and the coefficient (COR) is 0.86, which is better than a 2.83 dB RMSE and a 0.67 COR by empirical model. It is concluded that the AdaBoost model has a good performance on NP component simulation during TCs.
doi_str_mv 10.1080/10095020.2023.2295467
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3143097927</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_ae56c0a2ad624256a1fc320a46f6a13b</doaj_id><sourcerecordid>3143097927</sourcerecordid><originalsourceid>FETCH-LOGICAL-c451t-de905aaf521964219c5505b408e05167035f10d20908d21d7b62d5003a0395c93</originalsourceid><addsrcrecordid>eNp9kU1r3DAQhk1poWnSn1AQ9OztSPLYq1vD0o9AoJcEchNjfSTeONZ25G3wv6_cTXvsZWYQz7wzo7eqPkjYSNjCJwlgEBRsFCi9Ucpg03avqjNpjK5Ron5d6sLUK_S2epfzHkCbRuNZdXc50bjkIYsUxTP9CqLnQI_DdC_SJPIyzQ9hHpygQ-D5yEEweWJBs9jVPU1e-COv8MzpMDgahVvcmKaQL6o3kcYc3r_k8-r265eb3ff6-se3q93lde0alHPtgwEkiqikaZsSHCJg38A2AMq2A41RgldgYOuV9F3fKo9lfSoXoDP6vLo66fpEe3vg4Yl4sYkG--ch8b0lLheMwVLA1gEp8q1qFLYko9MKqGljqXVftD6etA6cfh5Dnu0-Hbl8ULZaNhpMZ1RXKDxRjlPOHOK_qRLsaoj9a4hdDbEvhpS-z6e-YYqJn-g58ejtTMuYODJNbljH_FfiN79sj78</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3143097927</pqid></control><display><type>article</type><title>Analysis of wave breaking on synthetic aperture radar at C-band during tropical cyclones</title><source>Taylor &amp; Francis Open Access</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>IngentaConnect Free/Open Access Journals</source><creator>Hu, Yuyi ; Shao, Weizeng ; Wang, Xiaoqing ; Zuo, Juncheng ; Jiang, Xingwei</creator><creatorcontrib>Hu, Yuyi ; Shao, Weizeng ; Wang, Xiaoqing ; Zuo, Juncheng ; Jiang, Xingwei</creatorcontrib><description>The purpose of our work is to analyze the effect of wave breaking on dual-polarized (vertical-vertical (VV) and vertical-horizontal (VH)) synthetic aperture radar (SAR) image in the C-band during tropical cyclones (TCs) based on the machine learning method. In this study, more than 1300 Sentinel-1 (S-1) interferometric-wide (IW) and extra wide (EW) mode SAR images are collocated with wave simulations from the WAVEWATCH-III (WW3) model during 400 TCs. The validation of the significant wave height (SWH) simulated using the WW3 model against Jason-2 altimeter data. The winds for S-1 SAR images are reconstructed using wind retrievals in VV and VH polarization. The non-polarized (NP) contribution σ wb caused by wave breaking is assumed to be the result of the SAR-measured normalized radar cross-section (NRCS) σ 0 minus the Bragg resonant roughness σ br without the distortion of rain cells during TCs. The σ br is simulated by imputing wave spectra from the WW3 model into the theoretical backscattering model. It is found that the ratio (σ wb /σ 0 ) in VV polarization is related to the wind speed, the wind direction relative with the flight orientation, and radar incidence angle. Following this rationale, the Adaptive Boosting (AdaBoost) model was used for the estimation of NP contribution σ wb during TCs and are implemented for more than 300 dual-polarized S-1 images to validate the model. It is found that for the comparison between the sum of simulation NRCS and SAR observations, the root mean squared error (RMSE) is 1.95 dB and the coefficient (COR) is 0.86, which is better than a 2.83 dB RMSE and a 0.67 COR by empirical model. It is concluded that the AdaBoost model has a good performance on NP component simulation during TCs.</description><identifier>ISSN: 1009-5020</identifier><identifier>EISSN: 1993-5153</identifier><identifier>DOI: 10.1080/10095020.2023.2295467</identifier><language>eng</language><publisher>Wuhan: Taylor &amp; Francis</publisher><subject>C band ; Cyclones ; Image reconstruction ; Incidence angle ; Inertia ; Machine learning ; Radar ; Radar cross sections ; Radar imaging ; Root-mean-square errors ; Synthetic aperture radar ; tropical cyclone ; Tropical cyclones ; Vertical polarization ; Wave analysis ; Wave breaking ; Wave height ; Wave spectra ; Wind ; Wind direction ; Wind speed</subject><ispartof>Geo-spatial information science, 2024-11, Vol.27 (6), p.2109-2122</ispartof><rights>2024 Wuhan University. Published by Informa UK Limited, trading as Taylor &amp; Francis Group. 2024</rights><rights>2024 Wuhan University. Published by Informa UK Limited, trading as Taylor &amp; Francis Group. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c451t-de905aaf521964219c5505b408e05167035f10d20908d21d7b62d5003a0395c93</citedby><cites>FETCH-LOGICAL-c451t-de905aaf521964219c5505b408e05167035f10d20908d21d7b62d5003a0395c93</cites><orcidid>0000-0003-3693-6217</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/10095020.2023.2295467$$EPDF$$P50$$Ginformaworld$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1080/10095020.2023.2295467$$EHTML$$P50$$Ginformaworld$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,861,2096,27483,27905,27906,59122,59123</link.rule.ids></links><search><creatorcontrib>Hu, Yuyi</creatorcontrib><creatorcontrib>Shao, Weizeng</creatorcontrib><creatorcontrib>Wang, Xiaoqing</creatorcontrib><creatorcontrib>Zuo, Juncheng</creatorcontrib><creatorcontrib>Jiang, Xingwei</creatorcontrib><title>Analysis of wave breaking on synthetic aperture radar at C-band during tropical cyclones</title><title>Geo-spatial information science</title><description>The purpose of our work is to analyze the effect of wave breaking on dual-polarized (vertical-vertical (VV) and vertical-horizontal (VH)) synthetic aperture radar (SAR) image in the C-band during tropical cyclones (TCs) based on the machine learning method. In this study, more than 1300 Sentinel-1 (S-1) interferometric-wide (IW) and extra wide (EW) mode SAR images are collocated with wave simulations from the WAVEWATCH-III (WW3) model during 400 TCs. The validation of the significant wave height (SWH) simulated using the WW3 model against Jason-2 altimeter data. The winds for S-1 SAR images are reconstructed using wind retrievals in VV and VH polarization. The non-polarized (NP) contribution σ wb caused by wave breaking is assumed to be the result of the SAR-measured normalized radar cross-section (NRCS) σ 0 minus the Bragg resonant roughness σ br without the distortion of rain cells during TCs. The σ br is simulated by imputing wave spectra from the WW3 model into the theoretical backscattering model. It is found that the ratio (σ wb /σ 0 ) in VV polarization is related to the wind speed, the wind direction relative with the flight orientation, and radar incidence angle. Following this rationale, the Adaptive Boosting (AdaBoost) model was used for the estimation of NP contribution σ wb during TCs and are implemented for more than 300 dual-polarized S-1 images to validate the model. It is found that for the comparison between the sum of simulation NRCS and SAR observations, the root mean squared error (RMSE) is 1.95 dB and the coefficient (COR) is 0.86, which is better than a 2.83 dB RMSE and a 0.67 COR by empirical model. It is concluded that the AdaBoost model has a good performance on NP component simulation during TCs.</description><subject>C band</subject><subject>Cyclones</subject><subject>Image reconstruction</subject><subject>Incidence angle</subject><subject>Inertia</subject><subject>Machine learning</subject><subject>Radar</subject><subject>Radar cross sections</subject><subject>Radar imaging</subject><subject>Root-mean-square errors</subject><subject>Synthetic aperture radar</subject><subject>tropical cyclone</subject><subject>Tropical cyclones</subject><subject>Vertical polarization</subject><subject>Wave analysis</subject><subject>Wave breaking</subject><subject>Wave height</subject><subject>Wave spectra</subject><subject>Wind</subject><subject>Wind direction</subject><subject>Wind speed</subject><issn>1009-5020</issn><issn>1993-5153</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>0YH</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><sourceid>DOA</sourceid><recordid>eNp9kU1r3DAQhk1poWnSn1AQ9OztSPLYq1vD0o9AoJcEchNjfSTeONZ25G3wv6_cTXvsZWYQz7wzo7eqPkjYSNjCJwlgEBRsFCi9Ucpg03avqjNpjK5Ron5d6sLUK_S2epfzHkCbRuNZdXc50bjkIYsUxTP9CqLnQI_DdC_SJPIyzQ9hHpygQ-D5yEEweWJBs9jVPU1e-COv8MzpMDgahVvcmKaQL6o3kcYc3r_k8-r265eb3ff6-se3q93lde0alHPtgwEkiqikaZsSHCJg38A2AMq2A41RgldgYOuV9F3fKo9lfSoXoDP6vLo66fpEe3vg4Yl4sYkG--ch8b0lLheMwVLA1gEp8q1qFLYko9MKqGljqXVftD6etA6cfh5Dnu0-Hbl8ULZaNhpMZ1RXKDxRjlPOHOK_qRLsaoj9a4hdDbEvhpS-z6e-YYqJn-g58ejtTMuYODJNbljH_FfiN79sj78</recordid><startdate>20241101</startdate><enddate>20241101</enddate><creator>Hu, Yuyi</creator><creator>Shao, Weizeng</creator><creator>Wang, Xiaoqing</creator><creator>Zuo, Juncheng</creator><creator>Jiang, Xingwei</creator><general>Taylor &amp; Francis</general><general>Taylor &amp; Francis Ltd</general><general>Taylor &amp; Francis Group</general><scope>0YH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7XB</scope><scope>8FD</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-3693-6217</orcidid></search><sort><creationdate>20241101</creationdate><title>Analysis of wave breaking on synthetic aperture radar at C-band during tropical cyclones</title><author>Hu, Yuyi ; Shao, Weizeng ; Wang, Xiaoqing ; Zuo, Juncheng ; Jiang, Xingwei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c451t-de905aaf521964219c5505b408e05167035f10d20908d21d7b62d5003a0395c93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>C band</topic><topic>Cyclones</topic><topic>Image reconstruction</topic><topic>Incidence angle</topic><topic>Inertia</topic><topic>Machine learning</topic><topic>Radar</topic><topic>Radar cross sections</topic><topic>Radar imaging</topic><topic>Root-mean-square errors</topic><topic>Synthetic aperture radar</topic><topic>tropical cyclone</topic><topic>Tropical cyclones</topic><topic>Vertical polarization</topic><topic>Wave analysis</topic><topic>Wave breaking</topic><topic>Wave height</topic><topic>Wave spectra</topic><topic>Wind</topic><topic>Wind direction</topic><topic>Wind speed</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hu, Yuyi</creatorcontrib><creatorcontrib>Shao, Weizeng</creatorcontrib><creatorcontrib>Wang, Xiaoqing</creatorcontrib><creatorcontrib>Zuo, Juncheng</creatorcontrib><creatorcontrib>Jiang, Xingwei</creatorcontrib><collection>Taylor &amp; Francis Open Access</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Technology Research Database</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Geo-spatial information science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hu, Yuyi</au><au>Shao, Weizeng</au><au>Wang, Xiaoqing</au><au>Zuo, Juncheng</au><au>Jiang, Xingwei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis of wave breaking on synthetic aperture radar at C-band during tropical cyclones</atitle><jtitle>Geo-spatial information science</jtitle><date>2024-11-01</date><risdate>2024</risdate><volume>27</volume><issue>6</issue><spage>2109</spage><epage>2122</epage><pages>2109-2122</pages><issn>1009-5020</issn><eissn>1993-5153</eissn><abstract>The purpose of our work is to analyze the effect of wave breaking on dual-polarized (vertical-vertical (VV) and vertical-horizontal (VH)) synthetic aperture radar (SAR) image in the C-band during tropical cyclones (TCs) based on the machine learning method. In this study, more than 1300 Sentinel-1 (S-1) interferometric-wide (IW) and extra wide (EW) mode SAR images are collocated with wave simulations from the WAVEWATCH-III (WW3) model during 400 TCs. The validation of the significant wave height (SWH) simulated using the WW3 model against Jason-2 altimeter data. The winds for S-1 SAR images are reconstructed using wind retrievals in VV and VH polarization. The non-polarized (NP) contribution σ wb caused by wave breaking is assumed to be the result of the SAR-measured normalized radar cross-section (NRCS) σ 0 minus the Bragg resonant roughness σ br without the distortion of rain cells during TCs. The σ br is simulated by imputing wave spectra from the WW3 model into the theoretical backscattering model. It is found that the ratio (σ wb /σ 0 ) in VV polarization is related to the wind speed, the wind direction relative with the flight orientation, and radar incidence angle. Following this rationale, the Adaptive Boosting (AdaBoost) model was used for the estimation of NP contribution σ wb during TCs and are implemented for more than 300 dual-polarized S-1 images to validate the model. It is found that for the comparison between the sum of simulation NRCS and SAR observations, the root mean squared error (RMSE) is 1.95 dB and the coefficient (COR) is 0.86, which is better than a 2.83 dB RMSE and a 0.67 COR by empirical model. It is concluded that the AdaBoost model has a good performance on NP component simulation during TCs.</abstract><cop>Wuhan</cop><pub>Taylor &amp; Francis</pub><doi>10.1080/10095020.2023.2295467</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-3693-6217</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1009-5020
ispartof Geo-spatial information science, 2024-11, Vol.27 (6), p.2109-2122
issn 1009-5020
1993-5153
language eng
recordid cdi_proquest_journals_3143097927
source Taylor & Francis Open Access; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; IngentaConnect Free/Open Access Journals
subjects C band
Cyclones
Image reconstruction
Incidence angle
Inertia
Machine learning
Radar
Radar cross sections
Radar imaging
Root-mean-square errors
Synthetic aperture radar
tropical cyclone
Tropical cyclones
Vertical polarization
Wave analysis
Wave breaking
Wave height
Wave spectra
Wind
Wind direction
Wind speed
title Analysis of wave breaking on synthetic aperture radar at C-band during tropical cyclones
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T19%3A31%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20of%20wave%20breaking%20on%20synthetic%20aperture%20radar%20at%20C-band%20during%20tropical%20cyclones&rft.jtitle=Geo-spatial%20information%20science&rft.au=Hu,%20Yuyi&rft.date=2024-11-01&rft.volume=27&rft.issue=6&rft.spage=2109&rft.epage=2122&rft.pages=2109-2122&rft.issn=1009-5020&rft.eissn=1993-5153&rft_id=info:doi/10.1080/10095020.2023.2295467&rft_dat=%3Cproquest_cross%3E3143097927%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3143097927&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_ae56c0a2ad624256a1fc320a46f6a13b&rfr_iscdi=true