Influence of welding methods on the microstructure of nickel-based weld metal for liquid hydrogen tanks

This study investigates the microstructure and hardness of weld metals used in liquid hydrogen storage tanks, with a focus on the effects of three welding methods: Gas Tungsten Arc Welding (GTAW), Submerged Arc Welding (SAW), and Shielded Metal Arc Welding (SMAW). Finite element simulations were emp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials science 2024-12, Vol.59 (48), p.22310-22326
Hauptverfasser: Yu, Chenjun, Kawabata, Tomoya, Kyouno, Shigetoshi, Li, Xixian, Uranaka, Shohei, Maeda, Daiki
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 22326
container_issue 48
container_start_page 22310
container_title Journal of materials science
container_volume 59
creator Yu, Chenjun
Kawabata, Tomoya
Kyouno, Shigetoshi
Li, Xixian
Uranaka, Shohei
Maeda, Daiki
description This study investigates the microstructure and hardness of weld metals used in liquid hydrogen storage tanks, with a focus on the effects of three welding methods: Gas Tungsten Arc Welding (GTAW), Submerged Arc Welding (SAW), and Shielded Metal Arc Welding (SMAW). Finite element simulations were employed to model the temperature field during welding, aiding in the explanation of observed microstructural differences. The results show that while GTAW and SMAW produce weld metals with similar microstructures, SAW generates significantly larger grains with a pronounced preferential orientation. The use of weaving techniques play a key role in shaping the solidification microstructures. Additionally, the hardness of the weld metal is comparable to that of the base material, with a slight reduction corresponding to increased grain size. This research offers valuable insights into optimizing welding processes for liquid hydrogen storage tanks by addressing the microstructural characteristics that influence weld joint performance. Graphical Abstract
doi_str_mv 10.1007/s10853-024-10505-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3143076200</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3143076200</sourcerecordid><originalsourceid>FETCH-LOGICAL-c244t-3a3e1c26fbd25df488c574e221b4e83eb2142a0f8a57a6dfb392909ea66a22c03</originalsourceid><addsrcrecordid>eNp9kDtPwzAURi0EEqXwB5gsMRuur51HR1TxqFSJBWbLSa7TtGnS2olo_z1pg8TG5OWc78qHsXsJjxIgeQoS0kgJQC0kRBCJwwWbyChRQqegLtkEAFGgjuU1uwlhDQBRgnLCykXj6p6anHjr-DfVRdWUfEvdqi0CbxverYhvq9y3ofN93vX-DDZVvqFaZDZQcbZOiq25az2vq31fFXx1LHxb0rBgm024ZVfO1oHuft8p-3p9-Zy_i-XH22L-vBQ5at0JZRXJHGOXFRgVTqdpHiWaEGWmKVWUodRowaU2SmxcuEzNcAYzsnFsEXNQU_Yw7u58u-8pdGbd9r4ZTholtYIkRjhROFKnfwVPzux8tbX-aCSYU1AzBjVDUHMOag6DpEYpDHBTkv-b_sf6AUmJenI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3143076200</pqid></control><display><type>article</type><title>Influence of welding methods on the microstructure of nickel-based weld metal for liquid hydrogen tanks</title><source>SpringerLink Journals - AutoHoldings</source><creator>Yu, Chenjun ; Kawabata, Tomoya ; Kyouno, Shigetoshi ; Li, Xixian ; Uranaka, Shohei ; Maeda, Daiki</creator><creatorcontrib>Yu, Chenjun ; Kawabata, Tomoya ; Kyouno, Shigetoshi ; Li, Xixian ; Uranaka, Shohei ; Maeda, Daiki</creatorcontrib><description>This study investigates the microstructure and hardness of weld metals used in liquid hydrogen storage tanks, with a focus on the effects of three welding methods: Gas Tungsten Arc Welding (GTAW), Submerged Arc Welding (SAW), and Shielded Metal Arc Welding (SMAW). Finite element simulations were employed to model the temperature field during welding, aiding in the explanation of observed microstructural differences. The results show that while GTAW and SMAW produce weld metals with similar microstructures, SAW generates significantly larger grains with a pronounced preferential orientation. The use of weaving techniques play a key role in shaping the solidification microstructures. Additionally, the hardness of the weld metal is comparable to that of the base material, with a slight reduction corresponding to increased grain size. This research offers valuable insights into optimizing welding processes for liquid hydrogen storage tanks by addressing the microstructural characteristics that influence weld joint performance. Graphical Abstract</description><identifier>ISSN: 0022-2461</identifier><identifier>EISSN: 1573-4803</identifier><identifier>DOI: 10.1007/s10853-024-10505-x</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Alloys ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Classical Mechanics ; Crystallography and Scattering Methods ; Ductility ; Gas tungsten arc welding ; Grain size ; Hardness ; Hydrogen ; Hydrogen storage ; Liquefied natural gas ; Liquid hydrogen ; Materials Science ; Metals ; Metals &amp; Corrosion ; Methods ; Microstructure ; Nickel alloys ; Polymer Sciences ; Shielded metal arc welding ; Solid Mechanics ; Solidification ; Steel ; Storage tanks ; Stress concentration ; Submerged arc welding ; Temperature ; Temperature distribution ; Weld metal ; Welded joints</subject><ispartof>Journal of materials science, 2024-12, Vol.59 (48), p.22310-22326</ispartof><rights>The Author(s) 2024</rights><rights>Copyright Springer Nature B.V. Dec 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c244t-3a3e1c26fbd25df488c574e221b4e83eb2142a0f8a57a6dfb392909ea66a22c03</cites><orcidid>0009-0001-9504-9039</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10853-024-10505-x$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10853-024-10505-x$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Yu, Chenjun</creatorcontrib><creatorcontrib>Kawabata, Tomoya</creatorcontrib><creatorcontrib>Kyouno, Shigetoshi</creatorcontrib><creatorcontrib>Li, Xixian</creatorcontrib><creatorcontrib>Uranaka, Shohei</creatorcontrib><creatorcontrib>Maeda, Daiki</creatorcontrib><title>Influence of welding methods on the microstructure of nickel-based weld metal for liquid hydrogen tanks</title><title>Journal of materials science</title><addtitle>J Mater Sci</addtitle><description>This study investigates the microstructure and hardness of weld metals used in liquid hydrogen storage tanks, with a focus on the effects of three welding methods: Gas Tungsten Arc Welding (GTAW), Submerged Arc Welding (SAW), and Shielded Metal Arc Welding (SMAW). Finite element simulations were employed to model the temperature field during welding, aiding in the explanation of observed microstructural differences. The results show that while GTAW and SMAW produce weld metals with similar microstructures, SAW generates significantly larger grains with a pronounced preferential orientation. The use of weaving techniques play a key role in shaping the solidification microstructures. Additionally, the hardness of the weld metal is comparable to that of the base material, with a slight reduction corresponding to increased grain size. This research offers valuable insights into optimizing welding processes for liquid hydrogen storage tanks by addressing the microstructural characteristics that influence weld joint performance. Graphical Abstract</description><subject>Alloys</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Classical Mechanics</subject><subject>Crystallography and Scattering Methods</subject><subject>Ductility</subject><subject>Gas tungsten arc welding</subject><subject>Grain size</subject><subject>Hardness</subject><subject>Hydrogen</subject><subject>Hydrogen storage</subject><subject>Liquefied natural gas</subject><subject>Liquid hydrogen</subject><subject>Materials Science</subject><subject>Metals</subject><subject>Metals &amp; Corrosion</subject><subject>Methods</subject><subject>Microstructure</subject><subject>Nickel alloys</subject><subject>Polymer Sciences</subject><subject>Shielded metal arc welding</subject><subject>Solid Mechanics</subject><subject>Solidification</subject><subject>Steel</subject><subject>Storage tanks</subject><subject>Stress concentration</subject><subject>Submerged arc welding</subject><subject>Temperature</subject><subject>Temperature distribution</subject><subject>Weld metal</subject><subject>Welded joints</subject><issn>0022-2461</issn><issn>1573-4803</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kDtPwzAURi0EEqXwB5gsMRuur51HR1TxqFSJBWbLSa7TtGnS2olo_z1pg8TG5OWc78qHsXsJjxIgeQoS0kgJQC0kRBCJwwWbyChRQqegLtkEAFGgjuU1uwlhDQBRgnLCykXj6p6anHjr-DfVRdWUfEvdqi0CbxverYhvq9y3ofN93vX-DDZVvqFaZDZQcbZOiq25az2vq31fFXx1LHxb0rBgm024ZVfO1oHuft8p-3p9-Zy_i-XH22L-vBQ5at0JZRXJHGOXFRgVTqdpHiWaEGWmKVWUodRowaU2SmxcuEzNcAYzsnFsEXNQU_Yw7u58u-8pdGbd9r4ZTholtYIkRjhROFKnfwVPzux8tbX-aCSYU1AzBjVDUHMOag6DpEYpDHBTkv-b_sf6AUmJenI</recordid><startdate>20241201</startdate><enddate>20241201</enddate><creator>Yu, Chenjun</creator><creator>Kawabata, Tomoya</creator><creator>Kyouno, Shigetoshi</creator><creator>Li, Xixian</creator><creator>Uranaka, Shohei</creator><creator>Maeda, Daiki</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0009-0001-9504-9039</orcidid></search><sort><creationdate>20241201</creationdate><title>Influence of welding methods on the microstructure of nickel-based weld metal for liquid hydrogen tanks</title><author>Yu, Chenjun ; Kawabata, Tomoya ; Kyouno, Shigetoshi ; Li, Xixian ; Uranaka, Shohei ; Maeda, Daiki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c244t-3a3e1c26fbd25df488c574e221b4e83eb2142a0f8a57a6dfb392909ea66a22c03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Alloys</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Classical Mechanics</topic><topic>Crystallography and Scattering Methods</topic><topic>Ductility</topic><topic>Gas tungsten arc welding</topic><topic>Grain size</topic><topic>Hardness</topic><topic>Hydrogen</topic><topic>Hydrogen storage</topic><topic>Liquefied natural gas</topic><topic>Liquid hydrogen</topic><topic>Materials Science</topic><topic>Metals</topic><topic>Metals &amp; Corrosion</topic><topic>Methods</topic><topic>Microstructure</topic><topic>Nickel alloys</topic><topic>Polymer Sciences</topic><topic>Shielded metal arc welding</topic><topic>Solid Mechanics</topic><topic>Solidification</topic><topic>Steel</topic><topic>Storage tanks</topic><topic>Stress concentration</topic><topic>Submerged arc welding</topic><topic>Temperature</topic><topic>Temperature distribution</topic><topic>Weld metal</topic><topic>Welded joints</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yu, Chenjun</creatorcontrib><creatorcontrib>Kawabata, Tomoya</creatorcontrib><creatorcontrib>Kyouno, Shigetoshi</creatorcontrib><creatorcontrib>Li, Xixian</creatorcontrib><creatorcontrib>Uranaka, Shohei</creatorcontrib><creatorcontrib>Maeda, Daiki</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><jtitle>Journal of materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yu, Chenjun</au><au>Kawabata, Tomoya</au><au>Kyouno, Shigetoshi</au><au>Li, Xixian</au><au>Uranaka, Shohei</au><au>Maeda, Daiki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Influence of welding methods on the microstructure of nickel-based weld metal for liquid hydrogen tanks</atitle><jtitle>Journal of materials science</jtitle><stitle>J Mater Sci</stitle><date>2024-12-01</date><risdate>2024</risdate><volume>59</volume><issue>48</issue><spage>22310</spage><epage>22326</epage><pages>22310-22326</pages><issn>0022-2461</issn><eissn>1573-4803</eissn><abstract>This study investigates the microstructure and hardness of weld metals used in liquid hydrogen storage tanks, with a focus on the effects of three welding methods: Gas Tungsten Arc Welding (GTAW), Submerged Arc Welding (SAW), and Shielded Metal Arc Welding (SMAW). Finite element simulations were employed to model the temperature field during welding, aiding in the explanation of observed microstructural differences. The results show that while GTAW and SMAW produce weld metals with similar microstructures, SAW generates significantly larger grains with a pronounced preferential orientation. The use of weaving techniques play a key role in shaping the solidification microstructures. Additionally, the hardness of the weld metal is comparable to that of the base material, with a slight reduction corresponding to increased grain size. This research offers valuable insights into optimizing welding processes for liquid hydrogen storage tanks by addressing the microstructural characteristics that influence weld joint performance. Graphical Abstract</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10853-024-10505-x</doi><tpages>17</tpages><orcidid>https://orcid.org/0009-0001-9504-9039</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-2461
ispartof Journal of materials science, 2024-12, Vol.59 (48), p.22310-22326
issn 0022-2461
1573-4803
language eng
recordid cdi_proquest_journals_3143076200
source SpringerLink Journals - AutoHoldings
subjects Alloys
Characterization and Evaluation of Materials
Chemistry and Materials Science
Classical Mechanics
Crystallography and Scattering Methods
Ductility
Gas tungsten arc welding
Grain size
Hardness
Hydrogen
Hydrogen storage
Liquefied natural gas
Liquid hydrogen
Materials Science
Metals
Metals & Corrosion
Methods
Microstructure
Nickel alloys
Polymer Sciences
Shielded metal arc welding
Solid Mechanics
Solidification
Steel
Storage tanks
Stress concentration
Submerged arc welding
Temperature
Temperature distribution
Weld metal
Welded joints
title Influence of welding methods on the microstructure of nickel-based weld metal for liquid hydrogen tanks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T16%3A12%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Influence%20of%20welding%20methods%20on%20the%20microstructure%20of%20nickel-based%20weld%20metal%20for%20liquid%20hydrogen%20tanks&rft.jtitle=Journal%20of%20materials%20science&rft.au=Yu,%20Chenjun&rft.date=2024-12-01&rft.volume=59&rft.issue=48&rft.spage=22310&rft.epage=22326&rft.pages=22310-22326&rft.issn=0022-2461&rft.eissn=1573-4803&rft_id=info:doi/10.1007/s10853-024-10505-x&rft_dat=%3Cproquest_cross%3E3143076200%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3143076200&rft_id=info:pmid/&rfr_iscdi=true