Influence of welding methods on the microstructure of nickel-based weld metal for liquid hydrogen tanks
This study investigates the microstructure and hardness of weld metals used in liquid hydrogen storage tanks, with a focus on the effects of three welding methods: Gas Tungsten Arc Welding (GTAW), Submerged Arc Welding (SAW), and Shielded Metal Arc Welding (SMAW). Finite element simulations were emp...
Gespeichert in:
Veröffentlicht in: | Journal of materials science 2024-12, Vol.59 (48), p.22310-22326 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 22326 |
---|---|
container_issue | 48 |
container_start_page | 22310 |
container_title | Journal of materials science |
container_volume | 59 |
creator | Yu, Chenjun Kawabata, Tomoya Kyouno, Shigetoshi Li, Xixian Uranaka, Shohei Maeda, Daiki |
description | This study investigates the microstructure and hardness of weld metals used in liquid hydrogen storage tanks, with a focus on the effects of three welding methods: Gas Tungsten Arc Welding (GTAW), Submerged Arc Welding (SAW), and Shielded Metal Arc Welding (SMAW). Finite element simulations were employed to model the temperature field during welding, aiding in the explanation of observed microstructural differences. The results show that while GTAW and SMAW produce weld metals with similar microstructures, SAW generates significantly larger grains with a pronounced preferential orientation. The use of weaving techniques play a key role in shaping the solidification microstructures. Additionally, the hardness of the weld metal is comparable to that of the base material, with a slight reduction corresponding to increased grain size. This research offers valuable insights into optimizing welding processes for liquid hydrogen storage tanks by addressing the microstructural characteristics that influence weld joint performance.
Graphical Abstract |
doi_str_mv | 10.1007/s10853-024-10505-x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3143076200</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3143076200</sourcerecordid><originalsourceid>FETCH-LOGICAL-c244t-3a3e1c26fbd25df488c574e221b4e83eb2142a0f8a57a6dfb392909ea66a22c03</originalsourceid><addsrcrecordid>eNp9kDtPwzAURi0EEqXwB5gsMRuur51HR1TxqFSJBWbLSa7TtGnS2olo_z1pg8TG5OWc78qHsXsJjxIgeQoS0kgJQC0kRBCJwwWbyChRQqegLtkEAFGgjuU1uwlhDQBRgnLCykXj6p6anHjr-DfVRdWUfEvdqi0CbxverYhvq9y3ofN93vX-DDZVvqFaZDZQcbZOiq25az2vq31fFXx1LHxb0rBgm024ZVfO1oHuft8p-3p9-Zy_i-XH22L-vBQ5at0JZRXJHGOXFRgVTqdpHiWaEGWmKVWUodRowaU2SmxcuEzNcAYzsnFsEXNQU_Yw7u58u-8pdGbd9r4ZTholtYIkRjhROFKnfwVPzux8tbX-aCSYU1AzBjVDUHMOag6DpEYpDHBTkv-b_sf6AUmJenI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3143076200</pqid></control><display><type>article</type><title>Influence of welding methods on the microstructure of nickel-based weld metal for liquid hydrogen tanks</title><source>SpringerLink Journals - AutoHoldings</source><creator>Yu, Chenjun ; Kawabata, Tomoya ; Kyouno, Shigetoshi ; Li, Xixian ; Uranaka, Shohei ; Maeda, Daiki</creator><creatorcontrib>Yu, Chenjun ; Kawabata, Tomoya ; Kyouno, Shigetoshi ; Li, Xixian ; Uranaka, Shohei ; Maeda, Daiki</creatorcontrib><description>This study investigates the microstructure and hardness of weld metals used in liquid hydrogen storage tanks, with a focus on the effects of three welding methods: Gas Tungsten Arc Welding (GTAW), Submerged Arc Welding (SAW), and Shielded Metal Arc Welding (SMAW). Finite element simulations were employed to model the temperature field during welding, aiding in the explanation of observed microstructural differences. The results show that while GTAW and SMAW produce weld metals with similar microstructures, SAW generates significantly larger grains with a pronounced preferential orientation. The use of weaving techniques play a key role in shaping the solidification microstructures. Additionally, the hardness of the weld metal is comparable to that of the base material, with a slight reduction corresponding to increased grain size. This research offers valuable insights into optimizing welding processes for liquid hydrogen storage tanks by addressing the microstructural characteristics that influence weld joint performance.
Graphical Abstract</description><identifier>ISSN: 0022-2461</identifier><identifier>EISSN: 1573-4803</identifier><identifier>DOI: 10.1007/s10853-024-10505-x</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Alloys ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Classical Mechanics ; Crystallography and Scattering Methods ; Ductility ; Gas tungsten arc welding ; Grain size ; Hardness ; Hydrogen ; Hydrogen storage ; Liquefied natural gas ; Liquid hydrogen ; Materials Science ; Metals ; Metals & Corrosion ; Methods ; Microstructure ; Nickel alloys ; Polymer Sciences ; Shielded metal arc welding ; Solid Mechanics ; Solidification ; Steel ; Storage tanks ; Stress concentration ; Submerged arc welding ; Temperature ; Temperature distribution ; Weld metal ; Welded joints</subject><ispartof>Journal of materials science, 2024-12, Vol.59 (48), p.22310-22326</ispartof><rights>The Author(s) 2024</rights><rights>Copyright Springer Nature B.V. Dec 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c244t-3a3e1c26fbd25df488c574e221b4e83eb2142a0f8a57a6dfb392909ea66a22c03</cites><orcidid>0009-0001-9504-9039</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10853-024-10505-x$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10853-024-10505-x$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Yu, Chenjun</creatorcontrib><creatorcontrib>Kawabata, Tomoya</creatorcontrib><creatorcontrib>Kyouno, Shigetoshi</creatorcontrib><creatorcontrib>Li, Xixian</creatorcontrib><creatorcontrib>Uranaka, Shohei</creatorcontrib><creatorcontrib>Maeda, Daiki</creatorcontrib><title>Influence of welding methods on the microstructure of nickel-based weld metal for liquid hydrogen tanks</title><title>Journal of materials science</title><addtitle>J Mater Sci</addtitle><description>This study investigates the microstructure and hardness of weld metals used in liquid hydrogen storage tanks, with a focus on the effects of three welding methods: Gas Tungsten Arc Welding (GTAW), Submerged Arc Welding (SAW), and Shielded Metal Arc Welding (SMAW). Finite element simulations were employed to model the temperature field during welding, aiding in the explanation of observed microstructural differences. The results show that while GTAW and SMAW produce weld metals with similar microstructures, SAW generates significantly larger grains with a pronounced preferential orientation. The use of weaving techniques play a key role in shaping the solidification microstructures. Additionally, the hardness of the weld metal is comparable to that of the base material, with a slight reduction corresponding to increased grain size. This research offers valuable insights into optimizing welding processes for liquid hydrogen storage tanks by addressing the microstructural characteristics that influence weld joint performance.
Graphical Abstract</description><subject>Alloys</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Classical Mechanics</subject><subject>Crystallography and Scattering Methods</subject><subject>Ductility</subject><subject>Gas tungsten arc welding</subject><subject>Grain size</subject><subject>Hardness</subject><subject>Hydrogen</subject><subject>Hydrogen storage</subject><subject>Liquefied natural gas</subject><subject>Liquid hydrogen</subject><subject>Materials Science</subject><subject>Metals</subject><subject>Metals & Corrosion</subject><subject>Methods</subject><subject>Microstructure</subject><subject>Nickel alloys</subject><subject>Polymer Sciences</subject><subject>Shielded metal arc welding</subject><subject>Solid Mechanics</subject><subject>Solidification</subject><subject>Steel</subject><subject>Storage tanks</subject><subject>Stress concentration</subject><subject>Submerged arc welding</subject><subject>Temperature</subject><subject>Temperature distribution</subject><subject>Weld metal</subject><subject>Welded joints</subject><issn>0022-2461</issn><issn>1573-4803</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kDtPwzAURi0EEqXwB5gsMRuur51HR1TxqFSJBWbLSa7TtGnS2olo_z1pg8TG5OWc78qHsXsJjxIgeQoS0kgJQC0kRBCJwwWbyChRQqegLtkEAFGgjuU1uwlhDQBRgnLCykXj6p6anHjr-DfVRdWUfEvdqi0CbxverYhvq9y3ofN93vX-DDZVvqFaZDZQcbZOiq25az2vq31fFXx1LHxb0rBgm024ZVfO1oHuft8p-3p9-Zy_i-XH22L-vBQ5at0JZRXJHGOXFRgVTqdpHiWaEGWmKVWUodRowaU2SmxcuEzNcAYzsnFsEXNQU_Yw7u58u-8pdGbd9r4ZTholtYIkRjhROFKnfwVPzux8tbX-aCSYU1AzBjVDUHMOag6DpEYpDHBTkv-b_sf6AUmJenI</recordid><startdate>20241201</startdate><enddate>20241201</enddate><creator>Yu, Chenjun</creator><creator>Kawabata, Tomoya</creator><creator>Kyouno, Shigetoshi</creator><creator>Li, Xixian</creator><creator>Uranaka, Shohei</creator><creator>Maeda, Daiki</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0009-0001-9504-9039</orcidid></search><sort><creationdate>20241201</creationdate><title>Influence of welding methods on the microstructure of nickel-based weld metal for liquid hydrogen tanks</title><author>Yu, Chenjun ; Kawabata, Tomoya ; Kyouno, Shigetoshi ; Li, Xixian ; Uranaka, Shohei ; Maeda, Daiki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c244t-3a3e1c26fbd25df488c574e221b4e83eb2142a0f8a57a6dfb392909ea66a22c03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Alloys</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Classical Mechanics</topic><topic>Crystallography and Scattering Methods</topic><topic>Ductility</topic><topic>Gas tungsten arc welding</topic><topic>Grain size</topic><topic>Hardness</topic><topic>Hydrogen</topic><topic>Hydrogen storage</topic><topic>Liquefied natural gas</topic><topic>Liquid hydrogen</topic><topic>Materials Science</topic><topic>Metals</topic><topic>Metals & Corrosion</topic><topic>Methods</topic><topic>Microstructure</topic><topic>Nickel alloys</topic><topic>Polymer Sciences</topic><topic>Shielded metal arc welding</topic><topic>Solid Mechanics</topic><topic>Solidification</topic><topic>Steel</topic><topic>Storage tanks</topic><topic>Stress concentration</topic><topic>Submerged arc welding</topic><topic>Temperature</topic><topic>Temperature distribution</topic><topic>Weld metal</topic><topic>Welded joints</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yu, Chenjun</creatorcontrib><creatorcontrib>Kawabata, Tomoya</creatorcontrib><creatorcontrib>Kyouno, Shigetoshi</creatorcontrib><creatorcontrib>Li, Xixian</creatorcontrib><creatorcontrib>Uranaka, Shohei</creatorcontrib><creatorcontrib>Maeda, Daiki</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><jtitle>Journal of materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yu, Chenjun</au><au>Kawabata, Tomoya</au><au>Kyouno, Shigetoshi</au><au>Li, Xixian</au><au>Uranaka, Shohei</au><au>Maeda, Daiki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Influence of welding methods on the microstructure of nickel-based weld metal for liquid hydrogen tanks</atitle><jtitle>Journal of materials science</jtitle><stitle>J Mater Sci</stitle><date>2024-12-01</date><risdate>2024</risdate><volume>59</volume><issue>48</issue><spage>22310</spage><epage>22326</epage><pages>22310-22326</pages><issn>0022-2461</issn><eissn>1573-4803</eissn><abstract>This study investigates the microstructure and hardness of weld metals used in liquid hydrogen storage tanks, with a focus on the effects of three welding methods: Gas Tungsten Arc Welding (GTAW), Submerged Arc Welding (SAW), and Shielded Metal Arc Welding (SMAW). Finite element simulations were employed to model the temperature field during welding, aiding in the explanation of observed microstructural differences. The results show that while GTAW and SMAW produce weld metals with similar microstructures, SAW generates significantly larger grains with a pronounced preferential orientation. The use of weaving techniques play a key role in shaping the solidification microstructures. Additionally, the hardness of the weld metal is comparable to that of the base material, with a slight reduction corresponding to increased grain size. This research offers valuable insights into optimizing welding processes for liquid hydrogen storage tanks by addressing the microstructural characteristics that influence weld joint performance.
Graphical Abstract</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10853-024-10505-x</doi><tpages>17</tpages><orcidid>https://orcid.org/0009-0001-9504-9039</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2461 |
ispartof | Journal of materials science, 2024-12, Vol.59 (48), p.22310-22326 |
issn | 0022-2461 1573-4803 |
language | eng |
recordid | cdi_proquest_journals_3143076200 |
source | SpringerLink Journals - AutoHoldings |
subjects | Alloys Characterization and Evaluation of Materials Chemistry and Materials Science Classical Mechanics Crystallography and Scattering Methods Ductility Gas tungsten arc welding Grain size Hardness Hydrogen Hydrogen storage Liquefied natural gas Liquid hydrogen Materials Science Metals Metals & Corrosion Methods Microstructure Nickel alloys Polymer Sciences Shielded metal arc welding Solid Mechanics Solidification Steel Storage tanks Stress concentration Submerged arc welding Temperature Temperature distribution Weld metal Welded joints |
title | Influence of welding methods on the microstructure of nickel-based weld metal for liquid hydrogen tanks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T16%3A12%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Influence%20of%20welding%20methods%20on%20the%20microstructure%20of%20nickel-based%20weld%20metal%20for%20liquid%20hydrogen%20tanks&rft.jtitle=Journal%20of%20materials%20science&rft.au=Yu,%20Chenjun&rft.date=2024-12-01&rft.volume=59&rft.issue=48&rft.spage=22310&rft.epage=22326&rft.pages=22310-22326&rft.issn=0022-2461&rft.eissn=1573-4803&rft_id=info:doi/10.1007/s10853-024-10505-x&rft_dat=%3Cproquest_cross%3E3143076200%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3143076200&rft_id=info:pmid/&rfr_iscdi=true |