Enhancing 3D Object Detection in Autonomous Vehicles Based on Synthetic Virtual Environment Analysis

Autonomous Vehicles (AVs) use natural images and videos as input to understand the real world by overlaying and inferring digital elements, facilitating proactive detection in an effort to assure safety. A crucial aspect of this process is real-time, accurate object recognition through automatic sce...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-12
Hauptverfasser: Li, Vladislav, Siniosoglou, Ilias, Karamitsou, Thomai, Lytos, Anastasios, Moscholios, Ioannis D, Goudos, Sotirios K, Banerjee, Jyoti S, Sarigiannidi, Panagiotis, Argyriou, Vasileios
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Li, Vladislav
Siniosoglou, Ilias
Karamitsou, Thomai
Lytos, Anastasios
Moscholios, Ioannis D
Goudos, Sotirios K
Banerjee, Jyoti S
Sarigiannidi, Panagiotis
Argyriou, Vasileios
description Autonomous Vehicles (AVs) use natural images and videos as input to understand the real world by overlaying and inferring digital elements, facilitating proactive detection in an effort to assure safety. A crucial aspect of this process is real-time, accurate object recognition through automatic scene analysis. While traditional methods primarily concentrate on 2D object detection, exploring 3D object detection, which involves projecting 3D bounding boxes into the three-dimensional environment, holds significance and can be notably enhanced using the AR ecosystem. This study examines an AI model's ability to deduce 3D bounding boxes in the context of real-time scene analysis while producing and evaluating the model's performance and processing time, in the virtual domain, which is then applied to AVs. This work also employs a synthetic dataset that includes artificially generated images mimicking various environmental, lighting, and spatiotemporal states. This evaluation is oriented in handling images featuring objects in diverse weather conditions, captured with varying camera settings. These variations pose more challenging detection and recognition scenarios, which the outcomes of this work can help achieve competitive results under most of the tested conditions.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3143056205</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3143056205</sourcerecordid><originalsourceid>FETCH-proquest_journals_31430562053</originalsourceid><addsrcrecordid>eNqNyrEKwjAQgOEgCIr2HQ6chTRp1bXaipuD4lpiPW1Ke9FeIvj2dvABnL7h_0diqrSOl5tEqYmImBsppVqtVZrqqbgVVBuqLD1A53C8Nlh5yNEPWEdgCbLgHbnOBYYL1rZqkWFrGG8w9NOHfI3eVnCxvQ-mhYLetnfUIXnIyLQftjwX47tpGaOfM7HYF-fdYfns3Ssg-7JxoR9mLnWcaJmulEz1f9cX2MxGFg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3143056205</pqid></control><display><type>article</type><title>Enhancing 3D Object Detection in Autonomous Vehicles Based on Synthetic Virtual Environment Analysis</title><source>Free E- Journals</source><creator>Li, Vladislav ; Siniosoglou, Ilias ; Karamitsou, Thomai ; Lytos, Anastasios ; Moscholios, Ioannis D ; Goudos, Sotirios K ; Banerjee, Jyoti S ; Sarigiannidi, Panagiotis ; Argyriou, Vasileios</creator><creatorcontrib>Li, Vladislav ; Siniosoglou, Ilias ; Karamitsou, Thomai ; Lytos, Anastasios ; Moscholios, Ioannis D ; Goudos, Sotirios K ; Banerjee, Jyoti S ; Sarigiannidi, Panagiotis ; Argyriou, Vasileios</creatorcontrib><description>Autonomous Vehicles (AVs) use natural images and videos as input to understand the real world by overlaying and inferring digital elements, facilitating proactive detection in an effort to assure safety. A crucial aspect of this process is real-time, accurate object recognition through automatic scene analysis. While traditional methods primarily concentrate on 2D object detection, exploring 3D object detection, which involves projecting 3D bounding boxes into the three-dimensional environment, holds significance and can be notably enhanced using the AR ecosystem. This study examines an AI model's ability to deduce 3D bounding boxes in the context of real-time scene analysis while producing and evaluating the model's performance and processing time, in the virtual domain, which is then applied to AVs. This work also employs a synthetic dataset that includes artificially generated images mimicking various environmental, lighting, and spatiotemporal states. This evaluation is oriented in handling images featuring objects in diverse weather conditions, captured with varying camera settings. These variations pose more challenging detection and recognition scenarios, which the outcomes of this work can help achieve competitive results under most of the tested conditions.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Automatic vehicle identification systems ; Autonomous vehicles ; Boxes ; Digital imaging ; Object recognition ; Performance evaluation ; Real time ; Scene analysis ; Synthetic data ; Two dimensional analysis ; Virtual environments ; Virtual reality ; Weather</subject><ispartof>arXiv.org, 2024-12</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Li, Vladislav</creatorcontrib><creatorcontrib>Siniosoglou, Ilias</creatorcontrib><creatorcontrib>Karamitsou, Thomai</creatorcontrib><creatorcontrib>Lytos, Anastasios</creatorcontrib><creatorcontrib>Moscholios, Ioannis D</creatorcontrib><creatorcontrib>Goudos, Sotirios K</creatorcontrib><creatorcontrib>Banerjee, Jyoti S</creatorcontrib><creatorcontrib>Sarigiannidi, Panagiotis</creatorcontrib><creatorcontrib>Argyriou, Vasileios</creatorcontrib><title>Enhancing 3D Object Detection in Autonomous Vehicles Based on Synthetic Virtual Environment Analysis</title><title>arXiv.org</title><description>Autonomous Vehicles (AVs) use natural images and videos as input to understand the real world by overlaying and inferring digital elements, facilitating proactive detection in an effort to assure safety. A crucial aspect of this process is real-time, accurate object recognition through automatic scene analysis. While traditional methods primarily concentrate on 2D object detection, exploring 3D object detection, which involves projecting 3D bounding boxes into the three-dimensional environment, holds significance and can be notably enhanced using the AR ecosystem. This study examines an AI model's ability to deduce 3D bounding boxes in the context of real-time scene analysis while producing and evaluating the model's performance and processing time, in the virtual domain, which is then applied to AVs. This work also employs a synthetic dataset that includes artificially generated images mimicking various environmental, lighting, and spatiotemporal states. This evaluation is oriented in handling images featuring objects in diverse weather conditions, captured with varying camera settings. These variations pose more challenging detection and recognition scenarios, which the outcomes of this work can help achieve competitive results under most of the tested conditions.</description><subject>Automatic vehicle identification systems</subject><subject>Autonomous vehicles</subject><subject>Boxes</subject><subject>Digital imaging</subject><subject>Object recognition</subject><subject>Performance evaluation</subject><subject>Real time</subject><subject>Scene analysis</subject><subject>Synthetic data</subject><subject>Two dimensional analysis</subject><subject>Virtual environments</subject><subject>Virtual reality</subject><subject>Weather</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNyrEKwjAQgOEgCIr2HQ6chTRp1bXaipuD4lpiPW1Ke9FeIvj2dvABnL7h_0diqrSOl5tEqYmImBsppVqtVZrqqbgVVBuqLD1A53C8Nlh5yNEPWEdgCbLgHbnOBYYL1rZqkWFrGG8w9NOHfI3eVnCxvQ-mhYLetnfUIXnIyLQftjwX47tpGaOfM7HYF-fdYfns3Ssg-7JxoR9mLnWcaJmulEz1f9cX2MxGFg</recordid><startdate>20241210</startdate><enddate>20241210</enddate><creator>Li, Vladislav</creator><creator>Siniosoglou, Ilias</creator><creator>Karamitsou, Thomai</creator><creator>Lytos, Anastasios</creator><creator>Moscholios, Ioannis D</creator><creator>Goudos, Sotirios K</creator><creator>Banerjee, Jyoti S</creator><creator>Sarigiannidi, Panagiotis</creator><creator>Argyriou, Vasileios</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20241210</creationdate><title>Enhancing 3D Object Detection in Autonomous Vehicles Based on Synthetic Virtual Environment Analysis</title><author>Li, Vladislav ; Siniosoglou, Ilias ; Karamitsou, Thomai ; Lytos, Anastasios ; Moscholios, Ioannis D ; Goudos, Sotirios K ; Banerjee, Jyoti S ; Sarigiannidi, Panagiotis ; Argyriou, Vasileios</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_31430562053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Automatic vehicle identification systems</topic><topic>Autonomous vehicles</topic><topic>Boxes</topic><topic>Digital imaging</topic><topic>Object recognition</topic><topic>Performance evaluation</topic><topic>Real time</topic><topic>Scene analysis</topic><topic>Synthetic data</topic><topic>Two dimensional analysis</topic><topic>Virtual environments</topic><topic>Virtual reality</topic><topic>Weather</topic><toplevel>online_resources</toplevel><creatorcontrib>Li, Vladislav</creatorcontrib><creatorcontrib>Siniosoglou, Ilias</creatorcontrib><creatorcontrib>Karamitsou, Thomai</creatorcontrib><creatorcontrib>Lytos, Anastasios</creatorcontrib><creatorcontrib>Moscholios, Ioannis D</creatorcontrib><creatorcontrib>Goudos, Sotirios K</creatorcontrib><creatorcontrib>Banerjee, Jyoti S</creatorcontrib><creatorcontrib>Sarigiannidi, Panagiotis</creatorcontrib><creatorcontrib>Argyriou, Vasileios</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Vladislav</au><au>Siniosoglou, Ilias</au><au>Karamitsou, Thomai</au><au>Lytos, Anastasios</au><au>Moscholios, Ioannis D</au><au>Goudos, Sotirios K</au><au>Banerjee, Jyoti S</au><au>Sarigiannidi, Panagiotis</au><au>Argyriou, Vasileios</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Enhancing 3D Object Detection in Autonomous Vehicles Based on Synthetic Virtual Environment Analysis</atitle><jtitle>arXiv.org</jtitle><date>2024-12-10</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Autonomous Vehicles (AVs) use natural images and videos as input to understand the real world by overlaying and inferring digital elements, facilitating proactive detection in an effort to assure safety. A crucial aspect of this process is real-time, accurate object recognition through automatic scene analysis. While traditional methods primarily concentrate on 2D object detection, exploring 3D object detection, which involves projecting 3D bounding boxes into the three-dimensional environment, holds significance and can be notably enhanced using the AR ecosystem. This study examines an AI model's ability to deduce 3D bounding boxes in the context of real-time scene analysis while producing and evaluating the model's performance and processing time, in the virtual domain, which is then applied to AVs. This work also employs a synthetic dataset that includes artificially generated images mimicking various environmental, lighting, and spatiotemporal states. This evaluation is oriented in handling images featuring objects in diverse weather conditions, captured with varying camera settings. These variations pose more challenging detection and recognition scenarios, which the outcomes of this work can help achieve competitive results under most of the tested conditions.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-12
issn 2331-8422
language eng
recordid cdi_proquest_journals_3143056205
source Free E- Journals
subjects Automatic vehicle identification systems
Autonomous vehicles
Boxes
Digital imaging
Object recognition
Performance evaluation
Real time
Scene analysis
Synthetic data
Two dimensional analysis
Virtual environments
Virtual reality
Weather
title Enhancing 3D Object Detection in Autonomous Vehicles Based on Synthetic Virtual Environment Analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T05%3A21%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Enhancing%203D%20Object%20Detection%20in%20Autonomous%20Vehicles%20Based%20on%20Synthetic%20Virtual%20Environment%20Analysis&rft.jtitle=arXiv.org&rft.au=Li,%20Vladislav&rft.date=2024-12-10&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3143056205%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3143056205&rft_id=info:pmid/&rfr_iscdi=true