A Real-time Degeneracy Sensing and Compensation Method for Enhanced LiDAR SLAM

LiDAR is widely used in Simultaneous Localization and Mapping (SLAM) and autonomous driving. The LiDAR odometry is of great importance in multi-sensor fusion. However, in some unstructured environments, the point cloud registration cannot constrain the poses of the LiDAR due to its sparse geometric...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-12
Hauptverfasser: Liao, Zongbo, Zhang, Xuanxuan, Zhang, Tianxiang, Li, Zhi, Zheng, Zhenqi, Wen, Zhichao, Li, You
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Liao, Zongbo
Zhang, Xuanxuan
Zhang, Tianxiang
Li, Zhi
Zheng, Zhenqi
Wen, Zhichao
Li, You
description LiDAR is widely used in Simultaneous Localization and Mapping (SLAM) and autonomous driving. The LiDAR odometry is of great importance in multi-sensor fusion. However, in some unstructured environments, the point cloud registration cannot constrain the poses of the LiDAR due to its sparse geometric features, which leads to the degeneracy of multi-sensor fusion accuracy. To address this problem, we propose a novel real-time approach to sense and compensate for the degeneracy of LiDAR. Firstly, this paper introduces the degeneracy factor with clear meaning, which can measure the degeneracy of LiDAR. Then, the Density-Based Spatial Clustering of Applications with Noise (DBSCAN) clustering method adaptively perceives the degeneracy with better environmental generalization. Finally, the degeneracy perception results are utilized to fuse LiDAR and IMU, thus effectively resisting degeneracy effects. Experiments on our dataset show the method's high accuracy and robustness and validate our algorithm's adaptability to different environments and LiDAR scanning modalities.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3143054039</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3143054039</sourcerecordid><originalsourceid>FETCH-proquest_journals_31430540393</originalsourceid><addsrcrecordid>eNqNir0KgzAYAEOhUGl9hw86CzHR_oyilg7aoXaXoJ8a0cQmOvTt69AH6HQcdxviMM597xIwtiOutT2llJ3OLAy5Qx4RPFEM3ixHhARbVGhE9YEClZWqBaFqiPU4rSpmqRXkOHe6hkYbSFUnVIU1ZDKJnlBkUX4g20YMFt0f9-R4S1_x3ZuMfi9o57LXi1FrKrkfcBoGlF_5f9cX_pQ8XA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3143054039</pqid></control><display><type>article</type><title>A Real-time Degeneracy Sensing and Compensation Method for Enhanced LiDAR SLAM</title><source>Free E- Journals</source><creator>Liao, Zongbo ; Zhang, Xuanxuan ; Zhang, Tianxiang ; Li, Zhi ; Zheng, Zhenqi ; Wen, Zhichao ; Li, You</creator><creatorcontrib>Liao, Zongbo ; Zhang, Xuanxuan ; Zhang, Tianxiang ; Li, Zhi ; Zheng, Zhenqi ; Wen, Zhichao ; Li, You</creatorcontrib><description>LiDAR is widely used in Simultaneous Localization and Mapping (SLAM) and autonomous driving. The LiDAR odometry is of great importance in multi-sensor fusion. However, in some unstructured environments, the point cloud registration cannot constrain the poses of the LiDAR due to its sparse geometric features, which leads to the degeneracy of multi-sensor fusion accuracy. To address this problem, we propose a novel real-time approach to sense and compensate for the degeneracy of LiDAR. Firstly, this paper introduces the degeneracy factor with clear meaning, which can measure the degeneracy of LiDAR. Then, the Density-Based Spatial Clustering of Applications with Noise (DBSCAN) clustering method adaptively perceives the degeneracy with better environmental generalization. Finally, the degeneracy perception results are utilized to fuse LiDAR and IMU, thus effectively resisting degeneracy effects. Experiments on our dataset show the method's high accuracy and robustness and validate our algorithm's adaptability to different environments and LiDAR scanning modalities.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Clustering ; Image registration ; Lidar ; Multisensor fusion ; Noise measurement ; Real time ; Simultaneous localization and mapping</subject><ispartof>arXiv.org, 2024-12</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Liao, Zongbo</creatorcontrib><creatorcontrib>Zhang, Xuanxuan</creatorcontrib><creatorcontrib>Zhang, Tianxiang</creatorcontrib><creatorcontrib>Li, Zhi</creatorcontrib><creatorcontrib>Zheng, Zhenqi</creatorcontrib><creatorcontrib>Wen, Zhichao</creatorcontrib><creatorcontrib>Li, You</creatorcontrib><title>A Real-time Degeneracy Sensing and Compensation Method for Enhanced LiDAR SLAM</title><title>arXiv.org</title><description>LiDAR is widely used in Simultaneous Localization and Mapping (SLAM) and autonomous driving. The LiDAR odometry is of great importance in multi-sensor fusion. However, in some unstructured environments, the point cloud registration cannot constrain the poses of the LiDAR due to its sparse geometric features, which leads to the degeneracy of multi-sensor fusion accuracy. To address this problem, we propose a novel real-time approach to sense and compensate for the degeneracy of LiDAR. Firstly, this paper introduces the degeneracy factor with clear meaning, which can measure the degeneracy of LiDAR. Then, the Density-Based Spatial Clustering of Applications with Noise (DBSCAN) clustering method adaptively perceives the degeneracy with better environmental generalization. Finally, the degeneracy perception results are utilized to fuse LiDAR and IMU, thus effectively resisting degeneracy effects. Experiments on our dataset show the method's high accuracy and robustness and validate our algorithm's adaptability to different environments and LiDAR scanning modalities.</description><subject>Algorithms</subject><subject>Clustering</subject><subject>Image registration</subject><subject>Lidar</subject><subject>Multisensor fusion</subject><subject>Noise measurement</subject><subject>Real time</subject><subject>Simultaneous localization and mapping</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNir0KgzAYAEOhUGl9hw86CzHR_oyilg7aoXaXoJ8a0cQmOvTt69AH6HQcdxviMM597xIwtiOutT2llJ3OLAy5Qx4RPFEM3ixHhARbVGhE9YEClZWqBaFqiPU4rSpmqRXkOHe6hkYbSFUnVIU1ZDKJnlBkUX4g20YMFt0f9-R4S1_x3ZuMfi9o57LXi1FrKrkfcBoGlF_5f9cX_pQ8XA</recordid><startdate>20241210</startdate><enddate>20241210</enddate><creator>Liao, Zongbo</creator><creator>Zhang, Xuanxuan</creator><creator>Zhang, Tianxiang</creator><creator>Li, Zhi</creator><creator>Zheng, Zhenqi</creator><creator>Wen, Zhichao</creator><creator>Li, You</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20241210</creationdate><title>A Real-time Degeneracy Sensing and Compensation Method for Enhanced LiDAR SLAM</title><author>Liao, Zongbo ; Zhang, Xuanxuan ; Zhang, Tianxiang ; Li, Zhi ; Zheng, Zhenqi ; Wen, Zhichao ; Li, You</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_31430540393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Clustering</topic><topic>Image registration</topic><topic>Lidar</topic><topic>Multisensor fusion</topic><topic>Noise measurement</topic><topic>Real time</topic><topic>Simultaneous localization and mapping</topic><toplevel>online_resources</toplevel><creatorcontrib>Liao, Zongbo</creatorcontrib><creatorcontrib>Zhang, Xuanxuan</creatorcontrib><creatorcontrib>Zhang, Tianxiang</creatorcontrib><creatorcontrib>Li, Zhi</creatorcontrib><creatorcontrib>Zheng, Zhenqi</creatorcontrib><creatorcontrib>Wen, Zhichao</creatorcontrib><creatorcontrib>Li, You</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liao, Zongbo</au><au>Zhang, Xuanxuan</au><au>Zhang, Tianxiang</au><au>Li, Zhi</au><au>Zheng, Zhenqi</au><au>Wen, Zhichao</au><au>Li, You</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>A Real-time Degeneracy Sensing and Compensation Method for Enhanced LiDAR SLAM</atitle><jtitle>arXiv.org</jtitle><date>2024-12-10</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>LiDAR is widely used in Simultaneous Localization and Mapping (SLAM) and autonomous driving. The LiDAR odometry is of great importance in multi-sensor fusion. However, in some unstructured environments, the point cloud registration cannot constrain the poses of the LiDAR due to its sparse geometric features, which leads to the degeneracy of multi-sensor fusion accuracy. To address this problem, we propose a novel real-time approach to sense and compensate for the degeneracy of LiDAR. Firstly, this paper introduces the degeneracy factor with clear meaning, which can measure the degeneracy of LiDAR. Then, the Density-Based Spatial Clustering of Applications with Noise (DBSCAN) clustering method adaptively perceives the degeneracy with better environmental generalization. Finally, the degeneracy perception results are utilized to fuse LiDAR and IMU, thus effectively resisting degeneracy effects. Experiments on our dataset show the method's high accuracy and robustness and validate our algorithm's adaptability to different environments and LiDAR scanning modalities.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-12
issn 2331-8422
language eng
recordid cdi_proquest_journals_3143054039
source Free E- Journals
subjects Algorithms
Clustering
Image registration
Lidar
Multisensor fusion
Noise measurement
Real time
Simultaneous localization and mapping
title A Real-time Degeneracy Sensing and Compensation Method for Enhanced LiDAR SLAM
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T16%3A16%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=A%20Real-time%20Degeneracy%20Sensing%20and%20Compensation%20Method%20for%20Enhanced%20LiDAR%20SLAM&rft.jtitle=arXiv.org&rft.au=Liao,%20Zongbo&rft.date=2024-12-10&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3143054039%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3143054039&rft_id=info:pmid/&rfr_iscdi=true