A Real-time Degeneracy Sensing and Compensation Method for Enhanced LiDAR SLAM
LiDAR is widely used in Simultaneous Localization and Mapping (SLAM) and autonomous driving. The LiDAR odometry is of great importance in multi-sensor fusion. However, in some unstructured environments, the point cloud registration cannot constrain the poses of the LiDAR due to its sparse geometric...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-12 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Liao, Zongbo Zhang, Xuanxuan Zhang, Tianxiang Li, Zhi Zheng, Zhenqi Wen, Zhichao Li, You |
description | LiDAR is widely used in Simultaneous Localization and Mapping (SLAM) and autonomous driving. The LiDAR odometry is of great importance in multi-sensor fusion. However, in some unstructured environments, the point cloud registration cannot constrain the poses of the LiDAR due to its sparse geometric features, which leads to the degeneracy of multi-sensor fusion accuracy. To address this problem, we propose a novel real-time approach to sense and compensate for the degeneracy of LiDAR. Firstly, this paper introduces the degeneracy factor with clear meaning, which can measure the degeneracy of LiDAR. Then, the Density-Based Spatial Clustering of Applications with Noise (DBSCAN) clustering method adaptively perceives the degeneracy with better environmental generalization. Finally, the degeneracy perception results are utilized to fuse LiDAR and IMU, thus effectively resisting degeneracy effects. Experiments on our dataset show the method's high accuracy and robustness and validate our algorithm's adaptability to different environments and LiDAR scanning modalities. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3143054039</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3143054039</sourcerecordid><originalsourceid>FETCH-proquest_journals_31430540393</originalsourceid><addsrcrecordid>eNqNir0KgzAYAEOhUGl9hw86CzHR_oyilg7aoXaXoJ8a0cQmOvTt69AH6HQcdxviMM597xIwtiOutT2llJ3OLAy5Qx4RPFEM3ixHhARbVGhE9YEClZWqBaFqiPU4rSpmqRXkOHe6hkYbSFUnVIU1ZDKJnlBkUX4g20YMFt0f9-R4S1_x3ZuMfi9o57LXi1FrKrkfcBoGlF_5f9cX_pQ8XA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3143054039</pqid></control><display><type>article</type><title>A Real-time Degeneracy Sensing and Compensation Method for Enhanced LiDAR SLAM</title><source>Free E- Journals</source><creator>Liao, Zongbo ; Zhang, Xuanxuan ; Zhang, Tianxiang ; Li, Zhi ; Zheng, Zhenqi ; Wen, Zhichao ; Li, You</creator><creatorcontrib>Liao, Zongbo ; Zhang, Xuanxuan ; Zhang, Tianxiang ; Li, Zhi ; Zheng, Zhenqi ; Wen, Zhichao ; Li, You</creatorcontrib><description>LiDAR is widely used in Simultaneous Localization and Mapping (SLAM) and autonomous driving. The LiDAR odometry is of great importance in multi-sensor fusion. However, in some unstructured environments, the point cloud registration cannot constrain the poses of the LiDAR due to its sparse geometric features, which leads to the degeneracy of multi-sensor fusion accuracy. To address this problem, we propose a novel real-time approach to sense and compensate for the degeneracy of LiDAR. Firstly, this paper introduces the degeneracy factor with clear meaning, which can measure the degeneracy of LiDAR. Then, the Density-Based Spatial Clustering of Applications with Noise (DBSCAN) clustering method adaptively perceives the degeneracy with better environmental generalization. Finally, the degeneracy perception results are utilized to fuse LiDAR and IMU, thus effectively resisting degeneracy effects. Experiments on our dataset show the method's high accuracy and robustness and validate our algorithm's adaptability to different environments and LiDAR scanning modalities.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Clustering ; Image registration ; Lidar ; Multisensor fusion ; Noise measurement ; Real time ; Simultaneous localization and mapping</subject><ispartof>arXiv.org, 2024-12</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Liao, Zongbo</creatorcontrib><creatorcontrib>Zhang, Xuanxuan</creatorcontrib><creatorcontrib>Zhang, Tianxiang</creatorcontrib><creatorcontrib>Li, Zhi</creatorcontrib><creatorcontrib>Zheng, Zhenqi</creatorcontrib><creatorcontrib>Wen, Zhichao</creatorcontrib><creatorcontrib>Li, You</creatorcontrib><title>A Real-time Degeneracy Sensing and Compensation Method for Enhanced LiDAR SLAM</title><title>arXiv.org</title><description>LiDAR is widely used in Simultaneous Localization and Mapping (SLAM) and autonomous driving. The LiDAR odometry is of great importance in multi-sensor fusion. However, in some unstructured environments, the point cloud registration cannot constrain the poses of the LiDAR due to its sparse geometric features, which leads to the degeneracy of multi-sensor fusion accuracy. To address this problem, we propose a novel real-time approach to sense and compensate for the degeneracy of LiDAR. Firstly, this paper introduces the degeneracy factor with clear meaning, which can measure the degeneracy of LiDAR. Then, the Density-Based Spatial Clustering of Applications with Noise (DBSCAN) clustering method adaptively perceives the degeneracy with better environmental generalization. Finally, the degeneracy perception results are utilized to fuse LiDAR and IMU, thus effectively resisting degeneracy effects. Experiments on our dataset show the method's high accuracy and robustness and validate our algorithm's adaptability to different environments and LiDAR scanning modalities.</description><subject>Algorithms</subject><subject>Clustering</subject><subject>Image registration</subject><subject>Lidar</subject><subject>Multisensor fusion</subject><subject>Noise measurement</subject><subject>Real time</subject><subject>Simultaneous localization and mapping</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNir0KgzAYAEOhUGl9hw86CzHR_oyilg7aoXaXoJ8a0cQmOvTt69AH6HQcdxviMM597xIwtiOutT2llJ3OLAy5Qx4RPFEM3ixHhARbVGhE9YEClZWqBaFqiPU4rSpmqRXkOHe6hkYbSFUnVIU1ZDKJnlBkUX4g20YMFt0f9-R4S1_x3ZuMfi9o57LXi1FrKrkfcBoGlF_5f9cX_pQ8XA</recordid><startdate>20241210</startdate><enddate>20241210</enddate><creator>Liao, Zongbo</creator><creator>Zhang, Xuanxuan</creator><creator>Zhang, Tianxiang</creator><creator>Li, Zhi</creator><creator>Zheng, Zhenqi</creator><creator>Wen, Zhichao</creator><creator>Li, You</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20241210</creationdate><title>A Real-time Degeneracy Sensing and Compensation Method for Enhanced LiDAR SLAM</title><author>Liao, Zongbo ; Zhang, Xuanxuan ; Zhang, Tianxiang ; Li, Zhi ; Zheng, Zhenqi ; Wen, Zhichao ; Li, You</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_31430540393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Clustering</topic><topic>Image registration</topic><topic>Lidar</topic><topic>Multisensor fusion</topic><topic>Noise measurement</topic><topic>Real time</topic><topic>Simultaneous localization and mapping</topic><toplevel>online_resources</toplevel><creatorcontrib>Liao, Zongbo</creatorcontrib><creatorcontrib>Zhang, Xuanxuan</creatorcontrib><creatorcontrib>Zhang, Tianxiang</creatorcontrib><creatorcontrib>Li, Zhi</creatorcontrib><creatorcontrib>Zheng, Zhenqi</creatorcontrib><creatorcontrib>Wen, Zhichao</creatorcontrib><creatorcontrib>Li, You</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liao, Zongbo</au><au>Zhang, Xuanxuan</au><au>Zhang, Tianxiang</au><au>Li, Zhi</au><au>Zheng, Zhenqi</au><au>Wen, Zhichao</au><au>Li, You</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>A Real-time Degeneracy Sensing and Compensation Method for Enhanced LiDAR SLAM</atitle><jtitle>arXiv.org</jtitle><date>2024-12-10</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>LiDAR is widely used in Simultaneous Localization and Mapping (SLAM) and autonomous driving. The LiDAR odometry is of great importance in multi-sensor fusion. However, in some unstructured environments, the point cloud registration cannot constrain the poses of the LiDAR due to its sparse geometric features, which leads to the degeneracy of multi-sensor fusion accuracy. To address this problem, we propose a novel real-time approach to sense and compensate for the degeneracy of LiDAR. Firstly, this paper introduces the degeneracy factor with clear meaning, which can measure the degeneracy of LiDAR. Then, the Density-Based Spatial Clustering of Applications with Noise (DBSCAN) clustering method adaptively perceives the degeneracy with better environmental generalization. Finally, the degeneracy perception results are utilized to fuse LiDAR and IMU, thus effectively resisting degeneracy effects. Experiments on our dataset show the method's high accuracy and robustness and validate our algorithm's adaptability to different environments and LiDAR scanning modalities.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-12 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_3143054039 |
source | Free E- Journals |
subjects | Algorithms Clustering Image registration Lidar Multisensor fusion Noise measurement Real time Simultaneous localization and mapping |
title | A Real-time Degeneracy Sensing and Compensation Method for Enhanced LiDAR SLAM |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T16%3A16%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=A%20Real-time%20Degeneracy%20Sensing%20and%20Compensation%20Method%20for%20Enhanced%20LiDAR%20SLAM&rft.jtitle=arXiv.org&rft.au=Liao,%20Zongbo&rft.date=2024-12-10&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3143054039%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3143054039&rft_id=info:pmid/&rfr_iscdi=true |