Vectorized Highly Parallel Density-Based Clustering for Applications With Noise
Clustering in data mining involves grouping similar objects into categories based on their characteristics. As the volume of data continues to grow and advancements in high-performance computing evolve, a critical need has emerged for algorithms that can efficiently process these computations and ex...
Gespeichert in:
Veröffentlicht in: | IEEE access 2024, Vol.12, p.181679-181692 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 181692 |
---|---|
container_issue | |
container_start_page | 181679 |
container_title | IEEE access |
container_volume | 12 |
creator | Xavier, Joseph Arnold Pedro Gutierrez Hermosillo Muriedas, Juan Nassyr, Stepan Sedona, Rocco Gotz, Markus Streit, Achim Riedel, Morris Cavallaro, Gabriele |
description | Clustering in data mining involves grouping similar objects into categories based on their characteristics. As the volume of data continues to grow and advancements in high-performance computing evolve, a critical need has emerged for algorithms that can efficiently process these computations and exploit the various levels of parallelism offered by modern supercomputing systems. Exploiting Single Instruction Multiple Data (SIMD) instructions enhances parallelism at the instruction level and minimizes data movement within the memory hierarchy. To fully harness a processor's SIMD capabilities and achieve optimal performance, adapting algorithms for better compatibility with vector operations is necessary. In this paper, we introduce a vectorized implementation of the Density-based Clustering for Applications with Noise (DBSCAN) algorithm suitable for the execution on both shared and distributed memory systems. By leveraging SIMD, we enhance the performance of distance computations. Our proposed Vectorized HPDBSCAN (VHPDBSCAN) demonstrates a performance improvement of up to two times over the state-of-the-art parallel version, Highly Parallel DBSCAN (HPDBSCAN), on the ARM-based A64FX processor on two different datasets with varying dimensions. We have parallelized computations which are essential for the efficient workload distribution. This has significantly enhanced the performance on higher dimensional datasets. Additionally, we evaluate VHPDBSCAN's energy consumption on the A64FX and Intel Xeon processors. The results show that in both processors, due to the reduced runtime, the total energy consumption of the application is reduced by 50% on the A64FX Central Processing Unit (CPU) and by approximately 19% on the Intel Xeon 8368 CPU compared to HPDBSCAN. |
doi_str_mv | 10.1109/ACCESS.2024.3507193 |
format | Article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_proquest_journals_3143028216</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10769413</ieee_id><doaj_id>oai_doaj_org_article_89f509a67be546e0bbae4250b331d8ca</doaj_id><sourcerecordid>3143028216</sourcerecordid><originalsourceid>FETCH-LOGICAL-d200t-75b8a77a543a6667c8329832713734859f148f6b8e94a75473806787bc2206ca3</originalsourceid><addsrcrecordid>eNo9kFtLw0AQhRdBsNT-An0I-Jy698tjjdUWihXq5TFskk27Zc3G3e1D_fWGVhwYBs4cvjMMADcIThGC6n5WFPPNZoohplPCoECKXIARRlzlhBF-BSYx7uFQcpCYGIH1h6mTD_bHNNnCbnfumL3qoJ0zLns0XbTpmD_oOGwLd4jJBNtts9aHbNb3ztY6Wd_F7NOmXfbibTTX4LLVLprJ3xyD96f5W7HIV-vnZTFb5Q2GMOWCVVILoRklmnMuakmwGlogIgiVTLWIypZX0iiqBaOCSMiFFFWNMeS1JmOwPHMbr_dlH-yXDsfSa1ueBB-2pQ7J1s6UUrUMKs1FZRjlBlaVNhQzWBGCGnli3Z1ZffDfBxNTufeH0A3nlwRRArEcHji4bs8ua4z5T0RQcEURIb_s4XBw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3143028216</pqid></control><display><type>article</type><title>Vectorized Highly Parallel Density-Based Clustering for Applications With Noise</title><source>EZB Free E-Journals</source><source>DOAJ Directory of Open Access Journals</source><source>IEEE Xplore Open Access Journals</source><creator>Xavier, Joseph Arnold ; Pedro Gutierrez Hermosillo Muriedas, Juan ; Nassyr, Stepan ; Sedona, Rocco ; Gotz, Markus ; Streit, Achim ; Riedel, Morris ; Cavallaro, Gabriele</creator><creatorcontrib>Xavier, Joseph Arnold ; Pedro Gutierrez Hermosillo Muriedas, Juan ; Nassyr, Stepan ; Sedona, Rocco ; Gotz, Markus ; Streit, Achim ; Riedel, Morris ; Cavallaro, Gabriele</creatorcontrib><description>Clustering in data mining involves grouping similar objects into categories based on their characteristics. As the volume of data continues to grow and advancements in high-performance computing evolve, a critical need has emerged for algorithms that can efficiently process these computations and exploit the various levels of parallelism offered by modern supercomputing systems. Exploiting Single Instruction Multiple Data (SIMD) instructions enhances parallelism at the instruction level and minimizes data movement within the memory hierarchy. To fully harness a processor's SIMD capabilities and achieve optimal performance, adapting algorithms for better compatibility with vector operations is necessary. In this paper, we introduce a vectorized implementation of the Density-based Clustering for Applications with Noise (DBSCAN) algorithm suitable for the execution on both shared and distributed memory systems. By leveraging SIMD, we enhance the performance of distance computations. Our proposed Vectorized HPDBSCAN (VHPDBSCAN) demonstrates a performance improvement of up to two times over the state-of-the-art parallel version, Highly Parallel DBSCAN (HPDBSCAN), on the ARM-based A64FX processor on two different datasets with varying dimensions. We have parallelized computations which are essential for the efficient workload distribution. This has significantly enhanced the performance on higher dimensional datasets. Additionally, we evaluate VHPDBSCAN's energy consumption on the A64FX and Intel Xeon processors. The results show that in both processors, due to the reduced runtime, the total energy consumption of the application is reduced by 50% on the A64FX Central Processing Unit (CPU) and by approximately 19% on the Intel Xeon 8368 CPU compared to HPDBSCAN.</description><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2024.3507193</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Central Processing Unit ; Central processing units ; Clustering ; Clustering algorithms ; Computational efficiency ; CPUs ; Data mining ; Datasets ; Density ; density-based clustering ; Distributed memory ; Energy consumption ; High performance computing ; Indexing ; Merging ; Microprocessors ; Noise ; Parallel processing ; Performance enhancement ; Performance evaluation ; Processors ; SIMD (computers) ; Single instruction multiple data ; Time complexity ; vectorization ; Vectors ; VHPDBSCAN</subject><ispartof>IEEE access, 2024, Vol.12, p.181679-181692</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-3239-9904 ; 0009-0007-5215-6022 ; 0000-0003-4089-972X ; 0000-0002-2233-1041 ; 0000-0002-5065-469X ; 0000-0001-8439-7145 ; 0000-0003-1810-9330</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10769413$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Xavier, Joseph Arnold</creatorcontrib><creatorcontrib>Pedro Gutierrez Hermosillo Muriedas, Juan</creatorcontrib><creatorcontrib>Nassyr, Stepan</creatorcontrib><creatorcontrib>Sedona, Rocco</creatorcontrib><creatorcontrib>Gotz, Markus</creatorcontrib><creatorcontrib>Streit, Achim</creatorcontrib><creatorcontrib>Riedel, Morris</creatorcontrib><creatorcontrib>Cavallaro, Gabriele</creatorcontrib><title>Vectorized Highly Parallel Density-Based Clustering for Applications With Noise</title><title>IEEE access</title><addtitle>Access</addtitle><description>Clustering in data mining involves grouping similar objects into categories based on their characteristics. As the volume of data continues to grow and advancements in high-performance computing evolve, a critical need has emerged for algorithms that can efficiently process these computations and exploit the various levels of parallelism offered by modern supercomputing systems. Exploiting Single Instruction Multiple Data (SIMD) instructions enhances parallelism at the instruction level and minimizes data movement within the memory hierarchy. To fully harness a processor's SIMD capabilities and achieve optimal performance, adapting algorithms for better compatibility with vector operations is necessary. In this paper, we introduce a vectorized implementation of the Density-based Clustering for Applications with Noise (DBSCAN) algorithm suitable for the execution on both shared and distributed memory systems. By leveraging SIMD, we enhance the performance of distance computations. Our proposed Vectorized HPDBSCAN (VHPDBSCAN) demonstrates a performance improvement of up to two times over the state-of-the-art parallel version, Highly Parallel DBSCAN (HPDBSCAN), on the ARM-based A64FX processor on two different datasets with varying dimensions. We have parallelized computations which are essential for the efficient workload distribution. This has significantly enhanced the performance on higher dimensional datasets. Additionally, we evaluate VHPDBSCAN's energy consumption on the A64FX and Intel Xeon processors. The results show that in both processors, due to the reduced runtime, the total energy consumption of the application is reduced by 50% on the A64FX Central Processing Unit (CPU) and by approximately 19% on the Intel Xeon 8368 CPU compared to HPDBSCAN.</description><subject>Algorithms</subject><subject>Central Processing Unit</subject><subject>Central processing units</subject><subject>Clustering</subject><subject>Clustering algorithms</subject><subject>Computational efficiency</subject><subject>CPUs</subject><subject>Data mining</subject><subject>Datasets</subject><subject>Density</subject><subject>density-based clustering</subject><subject>Distributed memory</subject><subject>Energy consumption</subject><subject>High performance computing</subject><subject>Indexing</subject><subject>Merging</subject><subject>Microprocessors</subject><subject>Noise</subject><subject>Parallel processing</subject><subject>Performance enhancement</subject><subject>Performance evaluation</subject><subject>Processors</subject><subject>SIMD (computers)</subject><subject>Single instruction multiple data</subject><subject>Time complexity</subject><subject>vectorization</subject><subject>Vectors</subject><subject>VHPDBSCAN</subject><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNo9kFtLw0AQhRdBsNT-An0I-Jy698tjjdUWihXq5TFskk27Zc3G3e1D_fWGVhwYBs4cvjMMADcIThGC6n5WFPPNZoohplPCoECKXIARRlzlhBF-BSYx7uFQcpCYGIH1h6mTD_bHNNnCbnfumL3qoJ0zLns0XbTpmD_oOGwLd4jJBNtts9aHbNb3ztY6Wd_F7NOmXfbibTTX4LLVLprJ3xyD96f5W7HIV-vnZTFb5Q2GMOWCVVILoRklmnMuakmwGlogIgiVTLWIypZX0iiqBaOCSMiFFFWNMeS1JmOwPHMbr_dlH-yXDsfSa1ueBB-2pQ7J1s6UUrUMKs1FZRjlBlaVNhQzWBGCGnli3Z1ZffDfBxNTufeH0A3nlwRRArEcHji4bs8ua4z5T0RQcEURIb_s4XBw</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Xavier, Joseph Arnold</creator><creator>Pedro Gutierrez Hermosillo Muriedas, Juan</creator><creator>Nassyr, Stepan</creator><creator>Sedona, Rocco</creator><creator>Gotz, Markus</creator><creator>Streit, Achim</creator><creator>Riedel, Morris</creator><creator>Cavallaro, Gabriele</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-3239-9904</orcidid><orcidid>https://orcid.org/0009-0007-5215-6022</orcidid><orcidid>https://orcid.org/0000-0003-4089-972X</orcidid><orcidid>https://orcid.org/0000-0002-2233-1041</orcidid><orcidid>https://orcid.org/0000-0002-5065-469X</orcidid><orcidid>https://orcid.org/0000-0001-8439-7145</orcidid><orcidid>https://orcid.org/0000-0003-1810-9330</orcidid></search><sort><creationdate>2024</creationdate><title>Vectorized Highly Parallel Density-Based Clustering for Applications With Noise</title><author>Xavier, Joseph Arnold ; Pedro Gutierrez Hermosillo Muriedas, Juan ; Nassyr, Stepan ; Sedona, Rocco ; Gotz, Markus ; Streit, Achim ; Riedel, Morris ; Cavallaro, Gabriele</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-d200t-75b8a77a543a6667c8329832713734859f148f6b8e94a75473806787bc2206ca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Central Processing Unit</topic><topic>Central processing units</topic><topic>Clustering</topic><topic>Clustering algorithms</topic><topic>Computational efficiency</topic><topic>CPUs</topic><topic>Data mining</topic><topic>Datasets</topic><topic>Density</topic><topic>density-based clustering</topic><topic>Distributed memory</topic><topic>Energy consumption</topic><topic>High performance computing</topic><topic>Indexing</topic><topic>Merging</topic><topic>Microprocessors</topic><topic>Noise</topic><topic>Parallel processing</topic><topic>Performance enhancement</topic><topic>Performance evaluation</topic><topic>Processors</topic><topic>SIMD (computers)</topic><topic>Single instruction multiple data</topic><topic>Time complexity</topic><topic>vectorization</topic><topic>Vectors</topic><topic>VHPDBSCAN</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xavier, Joseph Arnold</creatorcontrib><creatorcontrib>Pedro Gutierrez Hermosillo Muriedas, Juan</creatorcontrib><creatorcontrib>Nassyr, Stepan</creatorcontrib><creatorcontrib>Sedona, Rocco</creatorcontrib><creatorcontrib>Gotz, Markus</creatorcontrib><creatorcontrib>Streit, Achim</creatorcontrib><creatorcontrib>Riedel, Morris</creatorcontrib><creatorcontrib>Cavallaro, Gabriele</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xavier, Joseph Arnold</au><au>Pedro Gutierrez Hermosillo Muriedas, Juan</au><au>Nassyr, Stepan</au><au>Sedona, Rocco</au><au>Gotz, Markus</au><au>Streit, Achim</au><au>Riedel, Morris</au><au>Cavallaro, Gabriele</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Vectorized Highly Parallel Density-Based Clustering for Applications With Noise</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2024</date><risdate>2024</risdate><volume>12</volume><spage>181679</spage><epage>181692</epage><pages>181679-181692</pages><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Clustering in data mining involves grouping similar objects into categories based on their characteristics. As the volume of data continues to grow and advancements in high-performance computing evolve, a critical need has emerged for algorithms that can efficiently process these computations and exploit the various levels of parallelism offered by modern supercomputing systems. Exploiting Single Instruction Multiple Data (SIMD) instructions enhances parallelism at the instruction level and minimizes data movement within the memory hierarchy. To fully harness a processor's SIMD capabilities and achieve optimal performance, adapting algorithms for better compatibility with vector operations is necessary. In this paper, we introduce a vectorized implementation of the Density-based Clustering for Applications with Noise (DBSCAN) algorithm suitable for the execution on both shared and distributed memory systems. By leveraging SIMD, we enhance the performance of distance computations. Our proposed Vectorized HPDBSCAN (VHPDBSCAN) demonstrates a performance improvement of up to two times over the state-of-the-art parallel version, Highly Parallel DBSCAN (HPDBSCAN), on the ARM-based A64FX processor on two different datasets with varying dimensions. We have parallelized computations which are essential for the efficient workload distribution. This has significantly enhanced the performance on higher dimensional datasets. Additionally, we evaluate VHPDBSCAN's energy consumption on the A64FX and Intel Xeon processors. The results show that in both processors, due to the reduced runtime, the total energy consumption of the application is reduced by 50% on the A64FX Central Processing Unit (CPU) and by approximately 19% on the Intel Xeon 8368 CPU compared to HPDBSCAN.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2024.3507193</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-3239-9904</orcidid><orcidid>https://orcid.org/0009-0007-5215-6022</orcidid><orcidid>https://orcid.org/0000-0003-4089-972X</orcidid><orcidid>https://orcid.org/0000-0002-2233-1041</orcidid><orcidid>https://orcid.org/0000-0002-5065-469X</orcidid><orcidid>https://orcid.org/0000-0001-8439-7145</orcidid><orcidid>https://orcid.org/0000-0003-1810-9330</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2169-3536 |
ispartof | IEEE access, 2024, Vol.12, p.181679-181692 |
issn | 2169-3536 |
language | eng |
recordid | cdi_proquest_journals_3143028216 |
source | EZB Free E-Journals; DOAJ Directory of Open Access Journals; IEEE Xplore Open Access Journals |
subjects | Algorithms Central Processing Unit Central processing units Clustering Clustering algorithms Computational efficiency CPUs Data mining Datasets Density density-based clustering Distributed memory Energy consumption High performance computing Indexing Merging Microprocessors Noise Parallel processing Performance enhancement Performance evaluation Processors SIMD (computers) Single instruction multiple data Time complexity vectorization Vectors VHPDBSCAN |
title | Vectorized Highly Parallel Density-Based Clustering for Applications With Noise |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T15%3A55%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Vectorized%20Highly%20Parallel%20Density-Based%20Clustering%20for%20Applications%20With%20Noise&rft.jtitle=IEEE%20access&rft.au=Xavier,%20Joseph%20Arnold&rft.date=2024&rft.volume=12&rft.spage=181679&rft.epage=181692&rft.pages=181679-181692&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2024.3507193&rft_dat=%3Cproquest_doaj_%3E3143028216%3C/proquest_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3143028216&rft_id=info:pmid/&rft_ieee_id=10769413&rft_doaj_id=oai_doaj_org_article_89f509a67be546e0bbae4250b331d8ca&rfr_iscdi=true |