Deep Reinforcement Learning for Dynamic Spectrum Access: Convergence Analysis and System Design
In dynamic spectrum access (DSA) networks, secondary users (SUs) need to opportunistically access primary users' (PUs) radio spectrum without causing significant interference. Since the SU-PU interaction is limited, deep reinforcement learning has been introduced to help SUs conduct spectrum ac...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on wireless communications 2024-12, Vol.23 (12), p.18888-18902 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 18902 |
---|---|
container_issue | 12 |
container_start_page | 18888 |
container_title | IEEE transactions on wireless communications |
container_volume | 23 |
creator | Safavinejad, Ramin Chang, Hao-Hsuan Liu, Lingjia |
description | In dynamic spectrum access (DSA) networks, secondary users (SUs) need to opportunistically access primary users' (PUs) radio spectrum without causing significant interference. Since the SU-PU interaction is limited, deep reinforcement learning has been introduced to help SUs conduct spectrum access. Specifically, deep recurrent Q network (DRQN) has been utilized in DSA networks for SUs to aggregate information from recent experiences to make spectrum access decisions. DRQN is notorious for its sample efficiency since it needs a rather large number of training samples to tune its parameters which is a computationally demanding task. Deep echo state network (DEQN) has been introduced for DSA networks to address the sample efficiency issue of DRQN. In this work, we compare the convergence of DRQN and DEQN by comparing the upper bounds we obtain on their covering number, a notion of richness. Furthermore, we introduce a method to determine the right hyper-parameters for DEQN, providing system design guidance for DEQN-based DSA networks. Extensive performance evaluation confirms that DEQN-based DSA strategy is the superior choice with regard to computational power while outperforming DRQN-based ones. |
doi_str_mv | 10.1109/TWC.2024.3414428 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_3143027681</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10623365</ieee_id><sourcerecordid>3143027681</sourcerecordid><originalsourceid>FETCH-LOGICAL-c175t-1a3f28d10c4f4bf2694066efaa0dbcb726e2ec394b0af1f9c223e33901448be63</originalsourceid><addsrcrecordid>eNpNkM1LAzEQxYMoWKt3Dx4Cnrfma7O73srWLygItuIxZNNJSelm12Qr7H9vSj14msfw3jDvh9AtJTNKSfWw_qpnjDAx44IKwcozNKF5XmaMifL8qLnMKCvkJbqKcUcILWSeT5BaAPT4A5y3XTDQgh_wEnTwzm9xWuHF6HXrDF71YIZwaPHcGIjxEded_4GwBW8Az73ej9FFrP0Gr8Y4QIsXEN3WX6MLq_cRbv7mFH0-P63r12z5_vJWz5eZoUU-ZFRzy8oNJUZY0VgmK0GkBKs12TSmKZgEBoZXoiHaUlsZxjhwXpHUtWxA8im6P93tQ_d9gDioXXcI6a2oOBWcpOYlTS5ycpnQxRjAqj64VodRUaKOGFXCqI4Y1R_GFLk7RRwA_LNLxrnM-S8i7m6T</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3143027681</pqid></control><display><type>article</type><title>Deep Reinforcement Learning for Dynamic Spectrum Access: Convergence Analysis and System Design</title><source>IEEE/IET Electronic Library (IEL)</source><creator>Safavinejad, Ramin ; Chang, Hao-Hsuan ; Liu, Lingjia</creator><creatorcontrib>Safavinejad, Ramin ; Chang, Hao-Hsuan ; Liu, Lingjia</creatorcontrib><description>In dynamic spectrum access (DSA) networks, secondary users (SUs) need to opportunistically access primary users' (PUs) radio spectrum without causing significant interference. Since the SU-PU interaction is limited, deep reinforcement learning has been introduced to help SUs conduct spectrum access. Specifically, deep recurrent Q network (DRQN) has been utilized in DSA networks for SUs to aggregate information from recent experiences to make spectrum access decisions. DRQN is notorious for its sample efficiency since it needs a rather large number of training samples to tune its parameters which is a computationally demanding task. Deep echo state network (DEQN) has been introduced for DSA networks to address the sample efficiency issue of DRQN. In this work, we compare the convergence of DRQN and DEQN by comparing the upper bounds we obtain on their covering number, a notion of richness. Furthermore, we introduce a method to determine the right hyper-parameters for DEQN, providing system design guidance for DEQN-based DSA networks. Extensive performance evaluation confirms that DEQN-based DSA strategy is the superior choice with regard to computational power while outperforming DRQN-based ones.</description><identifier>ISSN: 1536-1276</identifier><identifier>EISSN: 1558-2248</identifier><identifier>DOI: 10.1109/TWC.2024.3414428</identifier><identifier>CODEN: ITWCAX</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>5G beyond and 6G ; 5G mobile communication ; 6G mobile communication ; Convergence ; covering numbers ; Deep learning ; Deep reinforcement learning (DRL) ; dynamic spectrum access (DSA) ; echo state network (ESN) ; Networks ; Parameters ; Performance evaluation ; Radio spectra ; recurrent neural network ; Spectrum allocation ; Systems design ; Training ; Training data ; Upper bound ; Upper bounds ; Wireless communication</subject><ispartof>IEEE transactions on wireless communications, 2024-12, Vol.23 (12), p.18888-18902</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c175t-1a3f28d10c4f4bf2694066efaa0dbcb726e2ec394b0af1f9c223e33901448be63</cites><orcidid>0000-0003-1915-1784 ; 0000-0002-6910-054X ; 0000-0002-5494-2154</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10623365$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10623365$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Safavinejad, Ramin</creatorcontrib><creatorcontrib>Chang, Hao-Hsuan</creatorcontrib><creatorcontrib>Liu, Lingjia</creatorcontrib><title>Deep Reinforcement Learning for Dynamic Spectrum Access: Convergence Analysis and System Design</title><title>IEEE transactions on wireless communications</title><addtitle>TWC</addtitle><description>In dynamic spectrum access (DSA) networks, secondary users (SUs) need to opportunistically access primary users' (PUs) radio spectrum without causing significant interference. Since the SU-PU interaction is limited, deep reinforcement learning has been introduced to help SUs conduct spectrum access. Specifically, deep recurrent Q network (DRQN) has been utilized in DSA networks for SUs to aggregate information from recent experiences to make spectrum access decisions. DRQN is notorious for its sample efficiency since it needs a rather large number of training samples to tune its parameters which is a computationally demanding task. Deep echo state network (DEQN) has been introduced for DSA networks to address the sample efficiency issue of DRQN. In this work, we compare the convergence of DRQN and DEQN by comparing the upper bounds we obtain on their covering number, a notion of richness. Furthermore, we introduce a method to determine the right hyper-parameters for DEQN, providing system design guidance for DEQN-based DSA networks. Extensive performance evaluation confirms that DEQN-based DSA strategy is the superior choice with regard to computational power while outperforming DRQN-based ones.</description><subject>5G beyond and 6G</subject><subject>5G mobile communication</subject><subject>6G mobile communication</subject><subject>Convergence</subject><subject>covering numbers</subject><subject>Deep learning</subject><subject>Deep reinforcement learning (DRL)</subject><subject>dynamic spectrum access (DSA)</subject><subject>echo state network (ESN)</subject><subject>Networks</subject><subject>Parameters</subject><subject>Performance evaluation</subject><subject>Radio spectra</subject><subject>recurrent neural network</subject><subject>Spectrum allocation</subject><subject>Systems design</subject><subject>Training</subject><subject>Training data</subject><subject>Upper bound</subject><subject>Upper bounds</subject><subject>Wireless communication</subject><issn>1536-1276</issn><issn>1558-2248</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkM1LAzEQxYMoWKt3Dx4Cnrfma7O73srWLygItuIxZNNJSelm12Qr7H9vSj14msfw3jDvh9AtJTNKSfWw_qpnjDAx44IKwcozNKF5XmaMifL8qLnMKCvkJbqKcUcILWSeT5BaAPT4A5y3XTDQgh_wEnTwzm9xWuHF6HXrDF71YIZwaPHcGIjxEded_4GwBW8Az73ej9FFrP0Gr8Y4QIsXEN3WX6MLq_cRbv7mFH0-P63r12z5_vJWz5eZoUU-ZFRzy8oNJUZY0VgmK0GkBKs12TSmKZgEBoZXoiHaUlsZxjhwXpHUtWxA8im6P93tQ_d9gDioXXcI6a2oOBWcpOYlTS5ycpnQxRjAqj64VodRUaKOGFXCqI4Y1R_GFLk7RRwA_LNLxrnM-S8i7m6T</recordid><startdate>202412</startdate><enddate>202412</enddate><creator>Safavinejad, Ramin</creator><creator>Chang, Hao-Hsuan</creator><creator>Liu, Lingjia</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-1915-1784</orcidid><orcidid>https://orcid.org/0000-0002-6910-054X</orcidid><orcidid>https://orcid.org/0000-0002-5494-2154</orcidid></search><sort><creationdate>202412</creationdate><title>Deep Reinforcement Learning for Dynamic Spectrum Access: Convergence Analysis and System Design</title><author>Safavinejad, Ramin ; Chang, Hao-Hsuan ; Liu, Lingjia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c175t-1a3f28d10c4f4bf2694066efaa0dbcb726e2ec394b0af1f9c223e33901448be63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>5G beyond and 6G</topic><topic>5G mobile communication</topic><topic>6G mobile communication</topic><topic>Convergence</topic><topic>covering numbers</topic><topic>Deep learning</topic><topic>Deep reinforcement learning (DRL)</topic><topic>dynamic spectrum access (DSA)</topic><topic>echo state network (ESN)</topic><topic>Networks</topic><topic>Parameters</topic><topic>Performance evaluation</topic><topic>Radio spectra</topic><topic>recurrent neural network</topic><topic>Spectrum allocation</topic><topic>Systems design</topic><topic>Training</topic><topic>Training data</topic><topic>Upper bound</topic><topic>Upper bounds</topic><topic>Wireless communication</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Safavinejad, Ramin</creatorcontrib><creatorcontrib>Chang, Hao-Hsuan</creatorcontrib><creatorcontrib>Liu, Lingjia</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on wireless communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Safavinejad, Ramin</au><au>Chang, Hao-Hsuan</au><au>Liu, Lingjia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep Reinforcement Learning for Dynamic Spectrum Access: Convergence Analysis and System Design</atitle><jtitle>IEEE transactions on wireless communications</jtitle><stitle>TWC</stitle><date>2024-12</date><risdate>2024</risdate><volume>23</volume><issue>12</issue><spage>18888</spage><epage>18902</epage><pages>18888-18902</pages><issn>1536-1276</issn><eissn>1558-2248</eissn><coden>ITWCAX</coden><abstract>In dynamic spectrum access (DSA) networks, secondary users (SUs) need to opportunistically access primary users' (PUs) radio spectrum without causing significant interference. Since the SU-PU interaction is limited, deep reinforcement learning has been introduced to help SUs conduct spectrum access. Specifically, deep recurrent Q network (DRQN) has been utilized in DSA networks for SUs to aggregate information from recent experiences to make spectrum access decisions. DRQN is notorious for its sample efficiency since it needs a rather large number of training samples to tune its parameters which is a computationally demanding task. Deep echo state network (DEQN) has been introduced for DSA networks to address the sample efficiency issue of DRQN. In this work, we compare the convergence of DRQN and DEQN by comparing the upper bounds we obtain on their covering number, a notion of richness. Furthermore, we introduce a method to determine the right hyper-parameters for DEQN, providing system design guidance for DEQN-based DSA networks. Extensive performance evaluation confirms that DEQN-based DSA strategy is the superior choice with regard to computational power while outperforming DRQN-based ones.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TWC.2024.3414428</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-1915-1784</orcidid><orcidid>https://orcid.org/0000-0002-6910-054X</orcidid><orcidid>https://orcid.org/0000-0002-5494-2154</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1536-1276 |
ispartof | IEEE transactions on wireless communications, 2024-12, Vol.23 (12), p.18888-18902 |
issn | 1536-1276 1558-2248 |
language | eng |
recordid | cdi_proquest_journals_3143027681 |
source | IEEE/IET Electronic Library (IEL) |
subjects | 5G beyond and 6G 5G mobile communication 6G mobile communication Convergence covering numbers Deep learning Deep reinforcement learning (DRL) dynamic spectrum access (DSA) echo state network (ESN) Networks Parameters Performance evaluation Radio spectra recurrent neural network Spectrum allocation Systems design Training Training data Upper bound Upper bounds Wireless communication |
title | Deep Reinforcement Learning for Dynamic Spectrum Access: Convergence Analysis and System Design |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T17%3A53%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20Reinforcement%20Learning%20for%20Dynamic%20Spectrum%20Access:%20Convergence%20Analysis%20and%20System%20Design&rft.jtitle=IEEE%20transactions%20on%20wireless%20communications&rft.au=Safavinejad,%20Ramin&rft.date=2024-12&rft.volume=23&rft.issue=12&rft.spage=18888&rft.epage=18902&rft.pages=18888-18902&rft.issn=1536-1276&rft.eissn=1558-2248&rft.coden=ITWCAX&rft_id=info:doi/10.1109/TWC.2024.3414428&rft_dat=%3Cproquest_RIE%3E3143027681%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3143027681&rft_id=info:pmid/&rft_ieee_id=10623365&rfr_iscdi=true |