Unsteady motion of nearly spherical particles in viscous fluids: a second-order asymptotic theory

The motion of small non-spherical particles is often studied using the unsteady Stokes equations. Zhang & Stone (J. Fluid Mech., vol. 367, 1998, pp. 329–358) reported an asymptotic treatment for nearly spherical particles, to first order in particle non-sphericity, i.e. $O(\epsilon )$, where $\e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of fluid mechanics 2024-12, Vol.1001
Hauptverfasser: Collis, Jesse F., Nunn, Alex, Sader, John E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title Journal of fluid mechanics
container_volume 1001
creator Collis, Jesse F.
Nunn, Alex
Sader, John E.
description The motion of small non-spherical particles is often studied using the unsteady Stokes equations. Zhang & Stone (J. Fluid Mech., vol. 367, 1998, pp. 329–358) reported an asymptotic treatment for nearly spherical particles, to first order in particle non-sphericity, i.e. $O(\epsilon )$, where $\epsilon$ quantifies the shape deviation from a sphere. Importantly, key physical phenomena are absent at $O(\epsilon )$, including (1) coupling between the torque experienced by the particle and its linear translation, (2) coupling between the force the particle experiences and its rotation and (3) the effect of non-sphericity on the orientation averages of these forces and torques. We present an explicit asymptotic theory to second order in particle non-sphericity, i.e. $O(\epsilon ^2)$, for the force and torque acting on a particle in a general unsteady Stokes flow. The derived analytical formulae apply to particles of arbitrary shape, providing the leading-order asymptotic theory for the three above-mentioned phenomena. The theory is demonstrated for several example nearly spherical particles including a spheroid, a ‘pear-shaped’ particle and a simple model for a SARS-CoV-2 virion. This includes formulae for force and torque as a function of particle orientation and their corresponding orientation averages. Our study reveals that the orientation-averaged forces and torques experienced by a nearly spherical particle cannot be generally represented by a perfect sphere. The reported formulae are validated using finite-amplitude three-dimensional direct numerical simulations of the Navier–Stokes equations. A Mathematica notebook is also provided, facilitating implementation of the theory for particle shapes of the user's choosing.
doi_str_mv 10.1017/jfm.2024.1075
format Article
fullrecord <record><control><sourceid>proquest_cambr</sourceid><recordid>TN_cdi_proquest_journals_3142747455</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_jfm_2024_1075</cupid><sourcerecordid>3142747455</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1041-b683cc1d59868ce5dc5c29bf4ebbc4b4d620210d1261749bb013f587a9e5d7953</originalsourceid><addsrcrecordid>eNpFkEtLxDAUhYMoOI4u3QdcdyY3TZrGnQy-YMCNsy551cnQNjVphf57W0ZwdbnwcQ7nQ-geyAYIiO2pbjeUUDZ_gl-gFbBCZqJg_BKtCKE0A6DkGt2kdCIEciLFCqlDlwan7ITbMPjQ4VDjzqnYTDj1Rxe9UQ3uVRy8aVzCvsM_PpkwJlw3o7fpESucnAmdzUK0LmKVprYf5iyDh6MLcbpFV7Vqkrv7u2t0eHn-3L1l-4_X993TPjNAGGS6KHNjwHJZFqVx3BpuqNQ1c1obppkt5mlALNACBJNazwtqXgolZ1ZInq_Rwzm3j-F7dGmoTmGM3VxZ5cCoYILxhdqeKaNaHb39cv8YkGrxWM0eq8VjtXjMfwEWdWb5</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3142747455</pqid></control><display><type>article</type><title>Unsteady motion of nearly spherical particles in viscous fluids: a second-order asymptotic theory</title><source>Cambridge Journals - Connect here FIRST to enable access</source><creator>Collis, Jesse F. ; Nunn, Alex ; Sader, John E.</creator><creatorcontrib>Collis, Jesse F. ; Nunn, Alex ; Sader, John E.</creatorcontrib><description>The motion of small non-spherical particles is often studied using the unsteady Stokes equations. Zhang &amp; Stone (J. Fluid Mech., vol. 367, 1998, pp. 329–358) reported an asymptotic treatment for nearly spherical particles, to first order in particle non-sphericity, i.e. $O(\epsilon )$, where $\epsilon$ quantifies the shape deviation from a sphere. Importantly, key physical phenomena are absent at $O(\epsilon )$, including (1) coupling between the torque experienced by the particle and its linear translation, (2) coupling between the force the particle experiences and its rotation and (3) the effect of non-sphericity on the orientation averages of these forces and torques. We present an explicit asymptotic theory to second order in particle non-sphericity, i.e. $O(\epsilon ^2)$, for the force and torque acting on a particle in a general unsteady Stokes flow. The derived analytical formulae apply to particles of arbitrary shape, providing the leading-order asymptotic theory for the three above-mentioned phenomena. The theory is demonstrated for several example nearly spherical particles including a spheroid, a ‘pear-shaped’ particle and a simple model for a SARS-CoV-2 virion. This includes formulae for force and torque as a function of particle orientation and their corresponding orientation averages. Our study reveals that the orientation-averaged forces and torques experienced by a nearly spherical particle cannot be generally represented by a perfect sphere. The reported formulae are validated using finite-amplitude three-dimensional direct numerical simulations of the Navier–Stokes equations. A Mathematica notebook is also provided, facilitating implementation of the theory for particle shapes of the user's choosing.</description><identifier>ISSN: 0022-1120</identifier><identifier>EISSN: 1469-7645</identifier><identifier>DOI: 10.1017/jfm.2024.1075</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Acoustics ; Asymptotic properties ; Coupling ; Direct numerical simulation ; Fluids ; Formulae ; JFM Papers ; Mathematics ; Nanoparticles ; Navier-Stokes equations ; Orientation ; Orientation effects ; Physical phenomena ; Reynolds number ; Rotating spheres ; Severe acute respiratory syndrome coronavirus 2 ; Shape ; Stokes flow ; Theories ; Torque ; Virions ; Viscoelasticity ; Viscous fluids</subject><ispartof>Journal of fluid mechanics, 2024-12, Vol.1001</ispartof><rights>The Author(s), 2024. Published by Cambridge University Press</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0009-0007-6977-8741 ; 0000-0002-7096-0627 ; 0000-0003-0992-101X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0022112024010759/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,780,784,27924,27925,55628</link.rule.ids></links><search><creatorcontrib>Collis, Jesse F.</creatorcontrib><creatorcontrib>Nunn, Alex</creatorcontrib><creatorcontrib>Sader, John E.</creatorcontrib><title>Unsteady motion of nearly spherical particles in viscous fluids: a second-order asymptotic theory</title><title>Journal of fluid mechanics</title><addtitle>J. Fluid Mech</addtitle><description>The motion of small non-spherical particles is often studied using the unsteady Stokes equations. Zhang &amp; Stone (J. Fluid Mech., vol. 367, 1998, pp. 329–358) reported an asymptotic treatment for nearly spherical particles, to first order in particle non-sphericity, i.e. $O(\epsilon )$, where $\epsilon$ quantifies the shape deviation from a sphere. Importantly, key physical phenomena are absent at $O(\epsilon )$, including (1) coupling between the torque experienced by the particle and its linear translation, (2) coupling between the force the particle experiences and its rotation and (3) the effect of non-sphericity on the orientation averages of these forces and torques. We present an explicit asymptotic theory to second order in particle non-sphericity, i.e. $O(\epsilon ^2)$, for the force and torque acting on a particle in a general unsteady Stokes flow. The derived analytical formulae apply to particles of arbitrary shape, providing the leading-order asymptotic theory for the three above-mentioned phenomena. The theory is demonstrated for several example nearly spherical particles including a spheroid, a ‘pear-shaped’ particle and a simple model for a SARS-CoV-2 virion. This includes formulae for force and torque as a function of particle orientation and their corresponding orientation averages. Our study reveals that the orientation-averaged forces and torques experienced by a nearly spherical particle cannot be generally represented by a perfect sphere. The reported formulae are validated using finite-amplitude three-dimensional direct numerical simulations of the Navier–Stokes equations. A Mathematica notebook is also provided, facilitating implementation of the theory for particle shapes of the user's choosing.</description><subject>Acoustics</subject><subject>Asymptotic properties</subject><subject>Coupling</subject><subject>Direct numerical simulation</subject><subject>Fluids</subject><subject>Formulae</subject><subject>JFM Papers</subject><subject>Mathematics</subject><subject>Nanoparticles</subject><subject>Navier-Stokes equations</subject><subject>Orientation</subject><subject>Orientation effects</subject><subject>Physical phenomena</subject><subject>Reynolds number</subject><subject>Rotating spheres</subject><subject>Severe acute respiratory syndrome coronavirus 2</subject><subject>Shape</subject><subject>Stokes flow</subject><subject>Theories</subject><subject>Torque</subject><subject>Virions</subject><subject>Viscoelasticity</subject><subject>Viscous fluids</subject><issn>0022-1120</issn><issn>1469-7645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpFkEtLxDAUhYMoOI4u3QdcdyY3TZrGnQy-YMCNsy551cnQNjVphf57W0ZwdbnwcQ7nQ-geyAYIiO2pbjeUUDZ_gl-gFbBCZqJg_BKtCKE0A6DkGt2kdCIEciLFCqlDlwan7ITbMPjQ4VDjzqnYTDj1Rxe9UQ3uVRy8aVzCvsM_PpkwJlw3o7fpESucnAmdzUK0LmKVprYf5iyDh6MLcbpFV7Vqkrv7u2t0eHn-3L1l-4_X993TPjNAGGS6KHNjwHJZFqVx3BpuqNQ1c1obppkt5mlALNACBJNazwtqXgolZ1ZInq_Rwzm3j-F7dGmoTmGM3VxZ5cCoYILxhdqeKaNaHb39cv8YkGrxWM0eq8VjtXjMfwEWdWb5</recordid><startdate>20241211</startdate><enddate>20241211</enddate><creator>Collis, Jesse F.</creator><creator>Nunn, Alex</creator><creator>Sader, John E.</creator><general>Cambridge University Press</general><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0009-0007-6977-8741</orcidid><orcidid>https://orcid.org/0000-0002-7096-0627</orcidid><orcidid>https://orcid.org/0000-0003-0992-101X</orcidid></search><sort><creationdate>20241211</creationdate><title>Unsteady motion of nearly spherical particles in viscous fluids: a second-order asymptotic theory</title><author>Collis, Jesse F. ; Nunn, Alex ; Sader, John E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1041-b683cc1d59868ce5dc5c29bf4ebbc4b4d620210d1261749bb013f587a9e5d7953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Acoustics</topic><topic>Asymptotic properties</topic><topic>Coupling</topic><topic>Direct numerical simulation</topic><topic>Fluids</topic><topic>Formulae</topic><topic>JFM Papers</topic><topic>Mathematics</topic><topic>Nanoparticles</topic><topic>Navier-Stokes equations</topic><topic>Orientation</topic><topic>Orientation effects</topic><topic>Physical phenomena</topic><topic>Reynolds number</topic><topic>Rotating spheres</topic><topic>Severe acute respiratory syndrome coronavirus 2</topic><topic>Shape</topic><topic>Stokes flow</topic><topic>Theories</topic><topic>Torque</topic><topic>Virions</topic><topic>Viscoelasticity</topic><topic>Viscous fluids</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Collis, Jesse F.</creatorcontrib><creatorcontrib>Nunn, Alex</creatorcontrib><creatorcontrib>Sader, John E.</creatorcontrib><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Collis, Jesse F.</au><au>Nunn, Alex</au><au>Sader, John E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Unsteady motion of nearly spherical particles in viscous fluids: a second-order asymptotic theory</atitle><jtitle>Journal of fluid mechanics</jtitle><addtitle>J. Fluid Mech</addtitle><date>2024-12-11</date><risdate>2024</risdate><volume>1001</volume><issn>0022-1120</issn><eissn>1469-7645</eissn><abstract>The motion of small non-spherical particles is often studied using the unsteady Stokes equations. Zhang &amp; Stone (J. Fluid Mech., vol. 367, 1998, pp. 329–358) reported an asymptotic treatment for nearly spherical particles, to first order in particle non-sphericity, i.e. $O(\epsilon )$, where $\epsilon$ quantifies the shape deviation from a sphere. Importantly, key physical phenomena are absent at $O(\epsilon )$, including (1) coupling between the torque experienced by the particle and its linear translation, (2) coupling between the force the particle experiences and its rotation and (3) the effect of non-sphericity on the orientation averages of these forces and torques. We present an explicit asymptotic theory to second order in particle non-sphericity, i.e. $O(\epsilon ^2)$, for the force and torque acting on a particle in a general unsteady Stokes flow. The derived analytical formulae apply to particles of arbitrary shape, providing the leading-order asymptotic theory for the three above-mentioned phenomena. The theory is demonstrated for several example nearly spherical particles including a spheroid, a ‘pear-shaped’ particle and a simple model for a SARS-CoV-2 virion. This includes formulae for force and torque as a function of particle orientation and their corresponding orientation averages. Our study reveals that the orientation-averaged forces and torques experienced by a nearly spherical particle cannot be generally represented by a perfect sphere. The reported formulae are validated using finite-amplitude three-dimensional direct numerical simulations of the Navier–Stokes equations. A Mathematica notebook is also provided, facilitating implementation of the theory for particle shapes of the user's choosing.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/jfm.2024.1075</doi><tpages>34</tpages><orcidid>https://orcid.org/0009-0007-6977-8741</orcidid><orcidid>https://orcid.org/0000-0002-7096-0627</orcidid><orcidid>https://orcid.org/0000-0003-0992-101X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0022-1120
ispartof Journal of fluid mechanics, 2024-12, Vol.1001
issn 0022-1120
1469-7645
language eng
recordid cdi_proquest_journals_3142747455
source Cambridge Journals - Connect here FIRST to enable access
subjects Acoustics
Asymptotic properties
Coupling
Direct numerical simulation
Fluids
Formulae
JFM Papers
Mathematics
Nanoparticles
Navier-Stokes equations
Orientation
Orientation effects
Physical phenomena
Reynolds number
Rotating spheres
Severe acute respiratory syndrome coronavirus 2
Shape
Stokes flow
Theories
Torque
Virions
Viscoelasticity
Viscous fluids
title Unsteady motion of nearly spherical particles in viscous fluids: a second-order asymptotic theory
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T07%3A00%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cambr&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Unsteady%20motion%20of%20nearly%20spherical%20particles%20in%20viscous%20fluids:%20a%20second-order%20asymptotic%20theory&rft.jtitle=Journal%20of%20fluid%20mechanics&rft.au=Collis,%20Jesse%20F.&rft.date=2024-12-11&rft.volume=1001&rft.issn=0022-1120&rft.eissn=1469-7645&rft_id=info:doi/10.1017/jfm.2024.1075&rft_dat=%3Cproquest_cambr%3E3142747455%3C/proquest_cambr%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3142747455&rft_id=info:pmid/&rft_cupid=10_1017_jfm_2024_1075&rfr_iscdi=true