Existence and multiplicity of weak solutions for a system of fourth‐order elliptic equations with combined nonlocal and indefinite source terms
This manuscript aims to investigate the existence of weak solutions for a system of partial differential equations (PDEs) described by Equation (1.2). The system consists of a set of PDEs with Leray–Lions operators and nonlinear terms. The goal is to establish the existence of at least one nontrivia...
Gespeichert in:
Veröffentlicht in: | Mathematical methods in the applied sciences 2025-01, Vol.48 (1), p.517-534 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 534 |
---|---|
container_issue | 1 |
container_start_page | 517 |
container_title | Mathematical methods in the applied sciences |
container_volume | 48 |
creator | Kefi, Khaled |
description | This manuscript aims to investigate the existence of weak solutions for a system of partial differential equations (PDEs) described by Equation (1.2). The system consists of a set of PDEs with Leray–Lions operators and nonlinear terms. The goal is to establish the existence of at least one nontrivial weak solution and at least three weak solutions for the system. The PDEs are defined on a bounded domain in
ℝN$$ {\mathrm{\mathbb{R}}}^N $$, with
N≥3$$ N\ge 3 $$, and subject to appropriate boundary conditions. The system involves various parameters, functions, and growth conditions that are carefully defined throughout the paper. The study focuses on understanding the behavior and existence of solutions for this system of PDEs, which has applications in physics, engineering, and other scientific fields. |
doi_str_mv | 10.1002/mma.10340 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3142713973</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3142713973</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1870-5fd845a3da6288f591c15cdbee549bdb85246688353d0d1f98a79209b64ad4e43</originalsourceid><addsrcrecordid>eNp1kD1OxDAQhS0EEstCwQ0sUVEs2ImTOCVC_EkgGqgjxx5rDY692I6W7TgCXJGTYDa0VDPSfG_ezEPomJIzSkhxPgwiNyUjO2hGSdsuKGvqXTQjtCELVlC2jw5ifCGEcEqLGfq6ejcxgZOAhVN4GG0yK2ukSRvsNV6DeMXR2zEZ7yLWPmCB4yYrht-x9mNIy--PTx8UBAzWmlUyEsPbKCbF2qQlln7ojQOFnXfWS2G3XsYp0MaZBNlhDPmCBGGIh2hPCxvh6K_O0fP11dPl7eL-8ebu8uJ-ISnPv1RacVaJUom64FxXLZW0kqoHqFjbq55XBatrzsuqVERR3XLRtAVp-5oJxYCVc3Qy7V0F_zZCTN1LvsJly66krGho2TZlpk4nSgYfYwDdrYIZRNh0lHS_iXc58W6beGbPJ3ZtLGz-B7uHh4tJ8QOOcYZa</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3142713973</pqid></control><display><type>article</type><title>Existence and multiplicity of weak solutions for a system of fourth‐order elliptic equations with combined nonlocal and indefinite source terms</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Kefi, Khaled</creator><creatorcontrib>Kefi, Khaled</creatorcontrib><description>This manuscript aims to investigate the existence of weak solutions for a system of partial differential equations (PDEs) described by Equation (1.2). The system consists of a set of PDEs with Leray–Lions operators and nonlinear terms. The goal is to establish the existence of at least one nontrivial weak solution and at least three weak solutions for the system. The PDEs are defined on a bounded domain in
ℝN$$ {\mathrm{\mathbb{R}}}^N $$, with
N≥3$$ N\ge 3 $$, and subject to appropriate boundary conditions. The system involves various parameters, functions, and growth conditions that are carefully defined throughout the paper. The study focuses on understanding the behavior and existence of solutions for this system of PDEs, which has applications in physics, engineering, and other scientific fields.</description><identifier>ISSN: 0170-4214</identifier><identifier>EISSN: 1099-1476</identifier><identifier>DOI: 10.1002/mma.10340</identifier><language>eng</language><publisher>Freiburg: Wiley Subscription Services, Inc</publisher><subject>Boundary conditions ; Elliptic differential equations ; Elliptic functions ; Hardy potential ; indefinite weight ; Leray–Lions operator ; Leray–Lions‐type operators variable exponents ; nonlocal term ; Operators (mathematics) ; Partial differential equations</subject><ispartof>Mathematical methods in the applied sciences, 2025-01, Vol.48 (1), p.517-534</ispartof><rights>2024 John Wiley & Sons Ltd.</rights><rights>2025 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1870-5fd845a3da6288f591c15cdbee549bdb85246688353d0d1f98a79209b64ad4e43</cites><orcidid>0000-0001-9277-5820</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmma.10340$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmma.10340$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27923,27924,45573,45574</link.rule.ids></links><search><creatorcontrib>Kefi, Khaled</creatorcontrib><title>Existence and multiplicity of weak solutions for a system of fourth‐order elliptic equations with combined nonlocal and indefinite source terms</title><title>Mathematical methods in the applied sciences</title><description>This manuscript aims to investigate the existence of weak solutions for a system of partial differential equations (PDEs) described by Equation (1.2). The system consists of a set of PDEs with Leray–Lions operators and nonlinear terms. The goal is to establish the existence of at least one nontrivial weak solution and at least three weak solutions for the system. The PDEs are defined on a bounded domain in
ℝN$$ {\mathrm{\mathbb{R}}}^N $$, with
N≥3$$ N\ge 3 $$, and subject to appropriate boundary conditions. The system involves various parameters, functions, and growth conditions that are carefully defined throughout the paper. The study focuses on understanding the behavior and existence of solutions for this system of PDEs, which has applications in physics, engineering, and other scientific fields.</description><subject>Boundary conditions</subject><subject>Elliptic differential equations</subject><subject>Elliptic functions</subject><subject>Hardy potential</subject><subject>indefinite weight</subject><subject>Leray–Lions operator</subject><subject>Leray–Lions‐type operators variable exponents</subject><subject>nonlocal term</subject><subject>Operators (mathematics)</subject><subject>Partial differential equations</subject><issn>0170-4214</issn><issn>1099-1476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><recordid>eNp1kD1OxDAQhS0EEstCwQ0sUVEs2ImTOCVC_EkgGqgjxx5rDY692I6W7TgCXJGTYDa0VDPSfG_ezEPomJIzSkhxPgwiNyUjO2hGSdsuKGvqXTQjtCELVlC2jw5ifCGEcEqLGfq6ejcxgZOAhVN4GG0yK2ukSRvsNV6DeMXR2zEZ7yLWPmCB4yYrht-x9mNIy--PTx8UBAzWmlUyEsPbKCbF2qQlln7ojQOFnXfWS2G3XsYp0MaZBNlhDPmCBGGIh2hPCxvh6K_O0fP11dPl7eL-8ebu8uJ-ISnPv1RacVaJUom64FxXLZW0kqoHqFjbq55XBatrzsuqVERR3XLRtAVp-5oJxYCVc3Qy7V0F_zZCTN1LvsJly66krGho2TZlpk4nSgYfYwDdrYIZRNh0lHS_iXc58W6beGbPJ3ZtLGz-B7uHh4tJ8QOOcYZa</recordid><startdate>20250115</startdate><enddate>20250115</enddate><creator>Kefi, Khaled</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><orcidid>https://orcid.org/0000-0001-9277-5820</orcidid></search><sort><creationdate>20250115</creationdate><title>Existence and multiplicity of weak solutions for a system of fourth‐order elliptic equations with combined nonlocal and indefinite source terms</title><author>Kefi, Khaled</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1870-5fd845a3da6288f591c15cdbee549bdb85246688353d0d1f98a79209b64ad4e43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Boundary conditions</topic><topic>Elliptic differential equations</topic><topic>Elliptic functions</topic><topic>Hardy potential</topic><topic>indefinite weight</topic><topic>Leray–Lions operator</topic><topic>Leray–Lions‐type operators variable exponents</topic><topic>nonlocal term</topic><topic>Operators (mathematics)</topic><topic>Partial differential equations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kefi, Khaled</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><jtitle>Mathematical methods in the applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kefi, Khaled</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Existence and multiplicity of weak solutions for a system of fourth‐order elliptic equations with combined nonlocal and indefinite source terms</atitle><jtitle>Mathematical methods in the applied sciences</jtitle><date>2025-01-15</date><risdate>2025</risdate><volume>48</volume><issue>1</issue><spage>517</spage><epage>534</epage><pages>517-534</pages><issn>0170-4214</issn><eissn>1099-1476</eissn><abstract>This manuscript aims to investigate the existence of weak solutions for a system of partial differential equations (PDEs) described by Equation (1.2). The system consists of a set of PDEs with Leray–Lions operators and nonlinear terms. The goal is to establish the existence of at least one nontrivial weak solution and at least three weak solutions for the system. The PDEs are defined on a bounded domain in
ℝN$$ {\mathrm{\mathbb{R}}}^N $$, with
N≥3$$ N\ge 3 $$, and subject to appropriate boundary conditions. The system involves various parameters, functions, and growth conditions that are carefully defined throughout the paper. The study focuses on understanding the behavior and existence of solutions for this system of PDEs, which has applications in physics, engineering, and other scientific fields.</abstract><cop>Freiburg</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/mma.10340</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0001-9277-5820</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0170-4214 |
ispartof | Mathematical methods in the applied sciences, 2025-01, Vol.48 (1), p.517-534 |
issn | 0170-4214 1099-1476 |
language | eng |
recordid | cdi_proquest_journals_3142713973 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Boundary conditions Elliptic differential equations Elliptic functions Hardy potential indefinite weight Leray–Lions operator Leray–Lions‐type operators variable exponents nonlocal term Operators (mathematics) Partial differential equations |
title | Existence and multiplicity of weak solutions for a system of fourth‐order elliptic equations with combined nonlocal and indefinite source terms |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T13%3A08%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Existence%20and%20multiplicity%20of%20weak%20solutions%20for%20a%20system%20of%20fourth%E2%80%90order%20elliptic%20equations%20with%20combined%20nonlocal%20and%20indefinite%20source%20terms&rft.jtitle=Mathematical%20methods%20in%20the%20applied%20sciences&rft.au=Kefi,%20Khaled&rft.date=2025-01-15&rft.volume=48&rft.issue=1&rft.spage=517&rft.epage=534&rft.pages=517-534&rft.issn=0170-4214&rft.eissn=1099-1476&rft_id=info:doi/10.1002/mma.10340&rft_dat=%3Cproquest_cross%3E3142713973%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3142713973&rft_id=info:pmid/&rfr_iscdi=true |