Existence and multiplicity of weak solutions for a system of fourth‐order elliptic equations with combined nonlocal and indefinite source terms

This manuscript aims to investigate the existence of weak solutions for a system of partial differential equations (PDEs) described by Equation (1.2). The system consists of a set of PDEs with Leray–Lions operators and nonlinear terms. The goal is to establish the existence of at least one nontrivia...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical methods in the applied sciences 2025-01, Vol.48 (1), p.517-534
1. Verfasser: Kefi, Khaled
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 534
container_issue 1
container_start_page 517
container_title Mathematical methods in the applied sciences
container_volume 48
creator Kefi, Khaled
description This manuscript aims to investigate the existence of weak solutions for a system of partial differential equations (PDEs) described by Equation (1.2). The system consists of a set of PDEs with Leray–Lions operators and nonlinear terms. The goal is to establish the existence of at least one nontrivial weak solution and at least three weak solutions for the system. The PDEs are defined on a bounded domain in ℝN$$ {\mathrm{\mathbb{R}}}^N $$, with N≥3$$ N\ge 3 $$, and subject to appropriate boundary conditions. The system involves various parameters, functions, and growth conditions that are carefully defined throughout the paper. The study focuses on understanding the behavior and existence of solutions for this system of PDEs, which has applications in physics, engineering, and other scientific fields.
doi_str_mv 10.1002/mma.10340
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3142713973</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3142713973</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1870-5fd845a3da6288f591c15cdbee549bdb85246688353d0d1f98a79209b64ad4e43</originalsourceid><addsrcrecordid>eNp1kD1OxDAQhS0EEstCwQ0sUVEs2ImTOCVC_EkgGqgjxx5rDY692I6W7TgCXJGTYDa0VDPSfG_ezEPomJIzSkhxPgwiNyUjO2hGSdsuKGvqXTQjtCELVlC2jw5ifCGEcEqLGfq6ejcxgZOAhVN4GG0yK2ukSRvsNV6DeMXR2zEZ7yLWPmCB4yYrht-x9mNIy--PTx8UBAzWmlUyEsPbKCbF2qQlln7ojQOFnXfWS2G3XsYp0MaZBNlhDPmCBGGIh2hPCxvh6K_O0fP11dPl7eL-8ebu8uJ-ISnPv1RacVaJUom64FxXLZW0kqoHqFjbq55XBatrzsuqVERR3XLRtAVp-5oJxYCVc3Qy7V0F_zZCTN1LvsJly66krGho2TZlpk4nSgYfYwDdrYIZRNh0lHS_iXc58W6beGbPJ3ZtLGz-B7uHh4tJ8QOOcYZa</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3142713973</pqid></control><display><type>article</type><title>Existence and multiplicity of weak solutions for a system of fourth‐order elliptic equations with combined nonlocal and indefinite source terms</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Kefi, Khaled</creator><creatorcontrib>Kefi, Khaled</creatorcontrib><description>This manuscript aims to investigate the existence of weak solutions for a system of partial differential equations (PDEs) described by Equation (1.2). The system consists of a set of PDEs with Leray–Lions operators and nonlinear terms. The goal is to establish the existence of at least one nontrivial weak solution and at least three weak solutions for the system. The PDEs are defined on a bounded domain in ℝN$$ {\mathrm{\mathbb{R}}}^N $$, with N≥3$$ N\ge 3 $$, and subject to appropriate boundary conditions. The system involves various parameters, functions, and growth conditions that are carefully defined throughout the paper. The study focuses on understanding the behavior and existence of solutions for this system of PDEs, which has applications in physics, engineering, and other scientific fields.</description><identifier>ISSN: 0170-4214</identifier><identifier>EISSN: 1099-1476</identifier><identifier>DOI: 10.1002/mma.10340</identifier><language>eng</language><publisher>Freiburg: Wiley Subscription Services, Inc</publisher><subject>Boundary conditions ; Elliptic differential equations ; Elliptic functions ; Hardy potential ; indefinite weight ; Leray–Lions operator ; Leray–Lions‐type operators variable exponents ; nonlocal term ; Operators (mathematics) ; Partial differential equations</subject><ispartof>Mathematical methods in the applied sciences, 2025-01, Vol.48 (1), p.517-534</ispartof><rights>2024 John Wiley &amp; Sons Ltd.</rights><rights>2025 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1870-5fd845a3da6288f591c15cdbee549bdb85246688353d0d1f98a79209b64ad4e43</cites><orcidid>0000-0001-9277-5820</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmma.10340$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmma.10340$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27923,27924,45573,45574</link.rule.ids></links><search><creatorcontrib>Kefi, Khaled</creatorcontrib><title>Existence and multiplicity of weak solutions for a system of fourth‐order elliptic equations with combined nonlocal and indefinite source terms</title><title>Mathematical methods in the applied sciences</title><description>This manuscript aims to investigate the existence of weak solutions for a system of partial differential equations (PDEs) described by Equation (1.2). The system consists of a set of PDEs with Leray–Lions operators and nonlinear terms. The goal is to establish the existence of at least one nontrivial weak solution and at least three weak solutions for the system. The PDEs are defined on a bounded domain in ℝN$$ {\mathrm{\mathbb{R}}}^N $$, with N≥3$$ N\ge 3 $$, and subject to appropriate boundary conditions. The system involves various parameters, functions, and growth conditions that are carefully defined throughout the paper. The study focuses on understanding the behavior and existence of solutions for this system of PDEs, which has applications in physics, engineering, and other scientific fields.</description><subject>Boundary conditions</subject><subject>Elliptic differential equations</subject><subject>Elliptic functions</subject><subject>Hardy potential</subject><subject>indefinite weight</subject><subject>Leray–Lions operator</subject><subject>Leray–Lions‐type operators variable exponents</subject><subject>nonlocal term</subject><subject>Operators (mathematics)</subject><subject>Partial differential equations</subject><issn>0170-4214</issn><issn>1099-1476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><recordid>eNp1kD1OxDAQhS0EEstCwQ0sUVEs2ImTOCVC_EkgGqgjxx5rDY692I6W7TgCXJGTYDa0VDPSfG_ezEPomJIzSkhxPgwiNyUjO2hGSdsuKGvqXTQjtCELVlC2jw5ifCGEcEqLGfq6ejcxgZOAhVN4GG0yK2ukSRvsNV6DeMXR2zEZ7yLWPmCB4yYrht-x9mNIy--PTx8UBAzWmlUyEsPbKCbF2qQlln7ojQOFnXfWS2G3XsYp0MaZBNlhDPmCBGGIh2hPCxvh6K_O0fP11dPl7eL-8ebu8uJ-ISnPv1RacVaJUom64FxXLZW0kqoHqFjbq55XBatrzsuqVERR3XLRtAVp-5oJxYCVc3Qy7V0F_zZCTN1LvsJly66krGho2TZlpk4nSgYfYwDdrYIZRNh0lHS_iXc58W6beGbPJ3ZtLGz-B7uHh4tJ8QOOcYZa</recordid><startdate>20250115</startdate><enddate>20250115</enddate><creator>Kefi, Khaled</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><orcidid>https://orcid.org/0000-0001-9277-5820</orcidid></search><sort><creationdate>20250115</creationdate><title>Existence and multiplicity of weak solutions for a system of fourth‐order elliptic equations with combined nonlocal and indefinite source terms</title><author>Kefi, Khaled</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1870-5fd845a3da6288f591c15cdbee549bdb85246688353d0d1f98a79209b64ad4e43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Boundary conditions</topic><topic>Elliptic differential equations</topic><topic>Elliptic functions</topic><topic>Hardy potential</topic><topic>indefinite weight</topic><topic>Leray–Lions operator</topic><topic>Leray–Lions‐type operators variable exponents</topic><topic>nonlocal term</topic><topic>Operators (mathematics)</topic><topic>Partial differential equations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kefi, Khaled</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><jtitle>Mathematical methods in the applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kefi, Khaled</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Existence and multiplicity of weak solutions for a system of fourth‐order elliptic equations with combined nonlocal and indefinite source terms</atitle><jtitle>Mathematical methods in the applied sciences</jtitle><date>2025-01-15</date><risdate>2025</risdate><volume>48</volume><issue>1</issue><spage>517</spage><epage>534</epage><pages>517-534</pages><issn>0170-4214</issn><eissn>1099-1476</eissn><abstract>This manuscript aims to investigate the existence of weak solutions for a system of partial differential equations (PDEs) described by Equation (1.2). The system consists of a set of PDEs with Leray–Lions operators and nonlinear terms. The goal is to establish the existence of at least one nontrivial weak solution and at least three weak solutions for the system. The PDEs are defined on a bounded domain in ℝN$$ {\mathrm{\mathbb{R}}}^N $$, with N≥3$$ N\ge 3 $$, and subject to appropriate boundary conditions. The system involves various parameters, functions, and growth conditions that are carefully defined throughout the paper. The study focuses on understanding the behavior and existence of solutions for this system of PDEs, which has applications in physics, engineering, and other scientific fields.</abstract><cop>Freiburg</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/mma.10340</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0001-9277-5820</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0170-4214
ispartof Mathematical methods in the applied sciences, 2025-01, Vol.48 (1), p.517-534
issn 0170-4214
1099-1476
language eng
recordid cdi_proquest_journals_3142713973
source Wiley Online Library Journals Frontfile Complete
subjects Boundary conditions
Elliptic differential equations
Elliptic functions
Hardy potential
indefinite weight
Leray–Lions operator
Leray–Lions‐type operators variable exponents
nonlocal term
Operators (mathematics)
Partial differential equations
title Existence and multiplicity of weak solutions for a system of fourth‐order elliptic equations with combined nonlocal and indefinite source terms
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T13%3A08%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Existence%20and%20multiplicity%20of%20weak%20solutions%20for%20a%20system%20of%20fourth%E2%80%90order%20elliptic%20equations%20with%20combined%20nonlocal%20and%20indefinite%20source%20terms&rft.jtitle=Mathematical%20methods%20in%20the%20applied%20sciences&rft.au=Kefi,%20Khaled&rft.date=2025-01-15&rft.volume=48&rft.issue=1&rft.spage=517&rft.epage=534&rft.pages=517-534&rft.issn=0170-4214&rft.eissn=1099-1476&rft_id=info:doi/10.1002/mma.10340&rft_dat=%3Cproquest_cross%3E3142713973%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3142713973&rft_id=info:pmid/&rfr_iscdi=true