Review on machine learning based disease diagnostics and classifications model development through a big data frameworks
There is a growing demand for real-time analysis and processing of the massive amounts of unstructured or semi-structured data being produced by the healthcare industry today. To better investigate the most useful information and give better medical treatment, modern medicine requires an interactive...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | |
container_volume | 3188 |
creator | Sahare, Sneha A. Gote, Ashwini Ingole, Kartik |
description | There is a growing demand for real-time analysis and processing of the massive amounts of unstructured or semi-structured data being produced by the healthcare industry today. To better investigate the most useful information and give better medical treatment, modern medicine requires an interactive and intelligent System capable of handling a big biological dataset with human-computer interaction. The impact of Machine Learning (ML) and big data on medicine, however, is presently difficult to conceptualise. The primary objective of this study is to create a Bigdata framework for the detection and categorization of diseases via the use of machine learning. This study applies big data analysis to the medical field, focusing on the diagnosis of three conditions: chronic kidney disease (CKD), heart disease (HD), and diabetes. |
doi_str_mv | 10.1063/5.0241705 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_3142698461</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3142698461</sourcerecordid><originalsourceid>FETCH-LOGICAL-p635-6c7808c5cc41b4a6305b63b7b56c73be938f4ecc90bf6753ebea676c8e402df3</originalsourceid><addsrcrecordid>eNotUEtLxDAYDKLgunrwHwS8CV2T5tUeZfEFgqAevJUk_drN2iY16e7qv7e6e5qBGWaYQeiSkgUlkt2IBck5VUQcoRkVgmZKUnmMZoSUPMs5-zhFZymtCclLpYoZ-n6FrYMdDh732q6cB9yBjt75FhudoMa1SzCRCXXrQxqdTVj7GttOp-QaZ_Xogk-4DzV0uIYtdGHowY94XMWwaVdYY-NaXOtR4ybqHnYhfqZzdNLoLsHFAefo7f7uffmYPb88PC1vn7NBMpFJqwpSWGEtp4ZryYgwkhllxKQwAyUrGg7WlsQ0UgkGBrRU0hbASV43bI6u9qlDDF8bSGO1Dpvop8KKUZ7LsuCSTq7rvStZN_7PqYboeh1_Kkqqv18rUR1-Zb-bWGyE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>3142698461</pqid></control><display><type>conference_proceeding</type><title>Review on machine learning based disease diagnostics and classifications model development through a big data frameworks</title><source>AIP Journals Complete</source><creator>Sahare, Sneha A. ; Gote, Ashwini ; Ingole, Kartik</creator><contributor>Gawande, Snehal P. ; Rajguru, Vijaya S. ; Adhau, Sarala P.</contributor><creatorcontrib>Sahare, Sneha A. ; Gote, Ashwini ; Ingole, Kartik ; Gawande, Snehal P. ; Rajguru, Vijaya S. ; Adhau, Sarala P.</creatorcontrib><description>There is a growing demand for real-time analysis and processing of the massive amounts of unstructured or semi-structured data being produced by the healthcare industry today. To better investigate the most useful information and give better medical treatment, modern medicine requires an interactive and intelligent System capable of handling a big biological dataset with human-computer interaction. The impact of Machine Learning (ML) and big data on medicine, however, is presently difficult to conceptualise. The primary objective of this study is to create a Bigdata framework for the detection and categorization of diseases via the use of machine learning. This study applies big data analysis to the medical field, focusing on the diagnosis of three conditions: chronic kidney disease (CKD), heart disease (HD), and diabetes.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0241705</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Big Data ; Data analysis ; Demand analysis ; Health services ; Heart diseases ; Industrial development ; Interactive systems ; Kidney diseases ; Machine learning ; Real time ; Structured data ; Unstructured data</subject><ispartof>AIP conference proceedings, 2024, Vol.3188 (1)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/5.0241705$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,790,4498,23909,23910,25118,27901,27902,76353</link.rule.ids></links><search><contributor>Gawande, Snehal P.</contributor><contributor>Rajguru, Vijaya S.</contributor><contributor>Adhau, Sarala P.</contributor><creatorcontrib>Sahare, Sneha A.</creatorcontrib><creatorcontrib>Gote, Ashwini</creatorcontrib><creatorcontrib>Ingole, Kartik</creatorcontrib><title>Review on machine learning based disease diagnostics and classifications model development through a big data frameworks</title><title>AIP conference proceedings</title><description>There is a growing demand for real-time analysis and processing of the massive amounts of unstructured or semi-structured data being produced by the healthcare industry today. To better investigate the most useful information and give better medical treatment, modern medicine requires an interactive and intelligent System capable of handling a big biological dataset with human-computer interaction. The impact of Machine Learning (ML) and big data on medicine, however, is presently difficult to conceptualise. The primary objective of this study is to create a Bigdata framework for the detection and categorization of diseases via the use of machine learning. This study applies big data analysis to the medical field, focusing on the diagnosis of three conditions: chronic kidney disease (CKD), heart disease (HD), and diabetes.</description><subject>Big Data</subject><subject>Data analysis</subject><subject>Demand analysis</subject><subject>Health services</subject><subject>Heart diseases</subject><subject>Industrial development</subject><subject>Interactive systems</subject><subject>Kidney diseases</subject><subject>Machine learning</subject><subject>Real time</subject><subject>Structured data</subject><subject>Unstructured data</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2024</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotUEtLxDAYDKLgunrwHwS8CV2T5tUeZfEFgqAevJUk_drN2iY16e7qv7e6e5qBGWaYQeiSkgUlkt2IBck5VUQcoRkVgmZKUnmMZoSUPMs5-zhFZymtCclLpYoZ-n6FrYMdDh732q6cB9yBjt75FhudoMa1SzCRCXXrQxqdTVj7GttOp-QaZ_Xogk-4DzV0uIYtdGHowY94XMWwaVdYY-NaXOtR4ybqHnYhfqZzdNLoLsHFAefo7f7uffmYPb88PC1vn7NBMpFJqwpSWGEtp4ZryYgwkhllxKQwAyUrGg7WlsQ0UgkGBrRU0hbASV43bI6u9qlDDF8bSGO1Dpvop8KKUZ7LsuCSTq7rvStZN_7PqYboeh1_Kkqqv18rUR1-Zb-bWGyE</recordid><startdate>20241210</startdate><enddate>20241210</enddate><creator>Sahare, Sneha A.</creator><creator>Gote, Ashwini</creator><creator>Ingole, Kartik</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20241210</creationdate><title>Review on machine learning based disease diagnostics and classifications model development through a big data frameworks</title><author>Sahare, Sneha A. ; Gote, Ashwini ; Ingole, Kartik</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p635-6c7808c5cc41b4a6305b63b7b56c73be938f4ecc90bf6753ebea676c8e402df3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Big Data</topic><topic>Data analysis</topic><topic>Demand analysis</topic><topic>Health services</topic><topic>Heart diseases</topic><topic>Industrial development</topic><topic>Interactive systems</topic><topic>Kidney diseases</topic><topic>Machine learning</topic><topic>Real time</topic><topic>Structured data</topic><topic>Unstructured data</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sahare, Sneha A.</creatorcontrib><creatorcontrib>Gote, Ashwini</creatorcontrib><creatorcontrib>Ingole, Kartik</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sahare, Sneha A.</au><au>Gote, Ashwini</au><au>Ingole, Kartik</au><au>Gawande, Snehal P.</au><au>Rajguru, Vijaya S.</au><au>Adhau, Sarala P.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Review on machine learning based disease diagnostics and classifications model development through a big data frameworks</atitle><btitle>AIP conference proceedings</btitle><date>2024-12-10</date><risdate>2024</risdate><volume>3188</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>There is a growing demand for real-time analysis and processing of the massive amounts of unstructured or semi-structured data being produced by the healthcare industry today. To better investigate the most useful information and give better medical treatment, modern medicine requires an interactive and intelligent System capable of handling a big biological dataset with human-computer interaction. The impact of Machine Learning (ML) and big data on medicine, however, is presently difficult to conceptualise. The primary objective of this study is to create a Bigdata framework for the detection and categorization of diseases via the use of machine learning. This study applies big data analysis to the medical field, focusing on the diagnosis of three conditions: chronic kidney disease (CKD), heart disease (HD), and diabetes.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0241705</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-243X |
ispartof | AIP conference proceedings, 2024, Vol.3188 (1) |
issn | 0094-243X 1551-7616 |
language | eng |
recordid | cdi_proquest_journals_3142698461 |
source | AIP Journals Complete |
subjects | Big Data Data analysis Demand analysis Health services Heart diseases Industrial development Interactive systems Kidney diseases Machine learning Real time Structured data Unstructured data |
title | Review on machine learning based disease diagnostics and classifications model development through a big data frameworks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T05%3A36%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Review%20on%20machine%20learning%20based%20disease%20diagnostics%20and%20classifications%20model%20development%20through%20a%20big%20data%20frameworks&rft.btitle=AIP%20conference%20proceedings&rft.au=Sahare,%20Sneha%20A.&rft.date=2024-12-10&rft.volume=3188&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0241705&rft_dat=%3Cproquest_scita%3E3142698461%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3142698461&rft_id=info:pmid/&rfr_iscdi=true |