Review on machine learning based disease diagnostics and classifications model development through a big data frameworks

There is a growing demand for real-time analysis and processing of the massive amounts of unstructured or semi-structured data being produced by the healthcare industry today. To better investigate the most useful information and give better medical treatment, modern medicine requires an interactive...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Sahare, Sneha A., Gote, Ashwini, Ingole, Kartik
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title
container_volume 3188
creator Sahare, Sneha A.
Gote, Ashwini
Ingole, Kartik
description There is a growing demand for real-time analysis and processing of the massive amounts of unstructured or semi-structured data being produced by the healthcare industry today. To better investigate the most useful information and give better medical treatment, modern medicine requires an interactive and intelligent System capable of handling a big biological dataset with human-computer interaction. The impact of Machine Learning (ML) and big data on medicine, however, is presently difficult to conceptualise. The primary objective of this study is to create a Bigdata framework for the detection and categorization of diseases via the use of machine learning. This study applies big data analysis to the medical field, focusing on the diagnosis of three conditions: chronic kidney disease (CKD), heart disease (HD), and diabetes.
doi_str_mv 10.1063/5.0241705
format Conference Proceeding
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_3142698461</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3142698461</sourcerecordid><originalsourceid>FETCH-LOGICAL-p635-6c7808c5cc41b4a6305b63b7b56c73be938f4ecc90bf6753ebea676c8e402df3</originalsourceid><addsrcrecordid>eNotUEtLxDAYDKLgunrwHwS8CV2T5tUeZfEFgqAevJUk_drN2iY16e7qv7e6e5qBGWaYQeiSkgUlkt2IBck5VUQcoRkVgmZKUnmMZoSUPMs5-zhFZymtCclLpYoZ-n6FrYMdDh732q6cB9yBjt75FhudoMa1SzCRCXXrQxqdTVj7GttOp-QaZ_Xogk-4DzV0uIYtdGHowY94XMWwaVdYY-NaXOtR4ybqHnYhfqZzdNLoLsHFAefo7f7uffmYPb88PC1vn7NBMpFJqwpSWGEtp4ZryYgwkhllxKQwAyUrGg7WlsQ0UgkGBrRU0hbASV43bI6u9qlDDF8bSGO1Dpvop8KKUZ7LsuCSTq7rvStZN_7PqYboeh1_Kkqqv18rUR1-Zb-bWGyE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>3142698461</pqid></control><display><type>conference_proceeding</type><title>Review on machine learning based disease diagnostics and classifications model development through a big data frameworks</title><source>AIP Journals Complete</source><creator>Sahare, Sneha A. ; Gote, Ashwini ; Ingole, Kartik</creator><contributor>Gawande, Snehal P. ; Rajguru, Vijaya S. ; Adhau, Sarala P.</contributor><creatorcontrib>Sahare, Sneha A. ; Gote, Ashwini ; Ingole, Kartik ; Gawande, Snehal P. ; Rajguru, Vijaya S. ; Adhau, Sarala P.</creatorcontrib><description>There is a growing demand for real-time analysis and processing of the massive amounts of unstructured or semi-structured data being produced by the healthcare industry today. To better investigate the most useful information and give better medical treatment, modern medicine requires an interactive and intelligent System capable of handling a big biological dataset with human-computer interaction. The impact of Machine Learning (ML) and big data on medicine, however, is presently difficult to conceptualise. The primary objective of this study is to create a Bigdata framework for the detection and categorization of diseases via the use of machine learning. This study applies big data analysis to the medical field, focusing on the diagnosis of three conditions: chronic kidney disease (CKD), heart disease (HD), and diabetes.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0241705</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Big Data ; Data analysis ; Demand analysis ; Health services ; Heart diseases ; Industrial development ; Interactive systems ; Kidney diseases ; Machine learning ; Real time ; Structured data ; Unstructured data</subject><ispartof>AIP conference proceedings, 2024, Vol.3188 (1)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/5.0241705$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,790,4498,23909,23910,25118,27901,27902,76353</link.rule.ids></links><search><contributor>Gawande, Snehal P.</contributor><contributor>Rajguru, Vijaya S.</contributor><contributor>Adhau, Sarala P.</contributor><creatorcontrib>Sahare, Sneha A.</creatorcontrib><creatorcontrib>Gote, Ashwini</creatorcontrib><creatorcontrib>Ingole, Kartik</creatorcontrib><title>Review on machine learning based disease diagnostics and classifications model development through a big data frameworks</title><title>AIP conference proceedings</title><description>There is a growing demand for real-time analysis and processing of the massive amounts of unstructured or semi-structured data being produced by the healthcare industry today. To better investigate the most useful information and give better medical treatment, modern medicine requires an interactive and intelligent System capable of handling a big biological dataset with human-computer interaction. The impact of Machine Learning (ML) and big data on medicine, however, is presently difficult to conceptualise. The primary objective of this study is to create a Bigdata framework for the detection and categorization of diseases via the use of machine learning. This study applies big data analysis to the medical field, focusing on the diagnosis of three conditions: chronic kidney disease (CKD), heart disease (HD), and diabetes.</description><subject>Big Data</subject><subject>Data analysis</subject><subject>Demand analysis</subject><subject>Health services</subject><subject>Heart diseases</subject><subject>Industrial development</subject><subject>Interactive systems</subject><subject>Kidney diseases</subject><subject>Machine learning</subject><subject>Real time</subject><subject>Structured data</subject><subject>Unstructured data</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2024</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotUEtLxDAYDKLgunrwHwS8CV2T5tUeZfEFgqAevJUk_drN2iY16e7qv7e6e5qBGWaYQeiSkgUlkt2IBck5VUQcoRkVgmZKUnmMZoSUPMs5-zhFZymtCclLpYoZ-n6FrYMdDh732q6cB9yBjt75FhudoMa1SzCRCXXrQxqdTVj7GttOp-QaZ_Xogk-4DzV0uIYtdGHowY94XMWwaVdYY-NaXOtR4ybqHnYhfqZzdNLoLsHFAefo7f7uffmYPb88PC1vn7NBMpFJqwpSWGEtp4ZryYgwkhllxKQwAyUrGg7WlsQ0UgkGBrRU0hbASV43bI6u9qlDDF8bSGO1Dpvop8KKUZ7LsuCSTq7rvStZN_7PqYboeh1_Kkqqv18rUR1-Zb-bWGyE</recordid><startdate>20241210</startdate><enddate>20241210</enddate><creator>Sahare, Sneha A.</creator><creator>Gote, Ashwini</creator><creator>Ingole, Kartik</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20241210</creationdate><title>Review on machine learning based disease diagnostics and classifications model development through a big data frameworks</title><author>Sahare, Sneha A. ; Gote, Ashwini ; Ingole, Kartik</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p635-6c7808c5cc41b4a6305b63b7b56c73be938f4ecc90bf6753ebea676c8e402df3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Big Data</topic><topic>Data analysis</topic><topic>Demand analysis</topic><topic>Health services</topic><topic>Heart diseases</topic><topic>Industrial development</topic><topic>Interactive systems</topic><topic>Kidney diseases</topic><topic>Machine learning</topic><topic>Real time</topic><topic>Structured data</topic><topic>Unstructured data</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sahare, Sneha A.</creatorcontrib><creatorcontrib>Gote, Ashwini</creatorcontrib><creatorcontrib>Ingole, Kartik</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sahare, Sneha A.</au><au>Gote, Ashwini</au><au>Ingole, Kartik</au><au>Gawande, Snehal P.</au><au>Rajguru, Vijaya S.</au><au>Adhau, Sarala P.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Review on machine learning based disease diagnostics and classifications model development through a big data frameworks</atitle><btitle>AIP conference proceedings</btitle><date>2024-12-10</date><risdate>2024</risdate><volume>3188</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>There is a growing demand for real-time analysis and processing of the massive amounts of unstructured or semi-structured data being produced by the healthcare industry today. To better investigate the most useful information and give better medical treatment, modern medicine requires an interactive and intelligent System capable of handling a big biological dataset with human-computer interaction. The impact of Machine Learning (ML) and big data on medicine, however, is presently difficult to conceptualise. The primary objective of this study is to create a Bigdata framework for the detection and categorization of diseases via the use of machine learning. This study applies big data analysis to the medical field, focusing on the diagnosis of three conditions: chronic kidney disease (CKD), heart disease (HD), and diabetes.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0241705</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP conference proceedings, 2024, Vol.3188 (1)
issn 0094-243X
1551-7616
language eng
recordid cdi_proquest_journals_3142698461
source AIP Journals Complete
subjects Big Data
Data analysis
Demand analysis
Health services
Heart diseases
Industrial development
Interactive systems
Kidney diseases
Machine learning
Real time
Structured data
Unstructured data
title Review on machine learning based disease diagnostics and classifications model development through a big data frameworks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T05%3A36%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Review%20on%20machine%20learning%20based%20disease%20diagnostics%20and%20classifications%20model%20development%20through%20a%20big%20data%20frameworks&rft.btitle=AIP%20conference%20proceedings&rft.au=Sahare,%20Sneha%20A.&rft.date=2024-12-10&rft.volume=3188&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0241705&rft_dat=%3Cproquest_scita%3E3142698461%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3142698461&rft_id=info:pmid/&rfr_iscdi=true