Novel approach for detection and categorization of brain tumours by using CT scan images
Brain tumor detection and categorization are crucial tasks in the field of medical imaging, essential for accurate diagnosis and tailored treatment strategies. In this paper, we present an innovative approach for brain tumor detection and categorization using Computed Tomography (CT) scan images. Th...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | |
container_volume | 3188 |
creator | Gawande, Ujwalla Golhar, Yogesh Jain, Sachin |
description | Brain tumor detection and categorization are crucial tasks in the field of medical imaging, essential for accurate diagnosis and tailored treatment strategies. In this paper, we present an innovative approach for brain tumor detection and categorization using Computed Tomography (CT) scan images. The proposed approach integrates advanced image processing methods and machine learning algorithms to achieve precise tumor identification and differentiation among various tumor types. Leveraging the inherent advantages of CT scans, our technique holds the potential to contribute significantly to early detection and improved patient outcomes. |
doi_str_mv | 10.1063/5.0240293 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_3142697895</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3142697895</sourcerecordid><originalsourceid>FETCH-LOGICAL-p633-efc80855bd5e25ea92b091beba7bb87c77fabd1cb209e3fa987a397488d105ae3</originalsourceid><addsrcrecordid>eNotkF1LwzAUhoMoWKcX_oOAd0JnPpomuZSiUxh6s4vdhZM0nR1bU5NWmL_euu3qwOHhPc95EbqnZE5JyZ_EnLCCMM0vUEaFoLksaXmJMkJ0kbOCr6_RTUpbMiFSqgytP8KP32Ho-xjAfeEmRFz7wbuhDR2GrsYOBr8Jsf2F4yo02EZoOzyM-zDGhO0Bj6ntNrha4eSgw-0eNj7doqsGdsnfnecMrV5fVtVbvvxcvFfPy7wvOc994xRRQthaeCY8aGaJptZbkNYq6aRswNbUWUa05w1oJYFrWShVUyLA8xl6OMVO_t-jT4PZTlbddNFwWrBSS6XFRD2eqOTa4fiH6ePkGQ-GEvNfnBHmXBz_A9BvYJQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>3142697895</pqid></control><display><type>conference_proceeding</type><title>Novel approach for detection and categorization of brain tumours by using CT scan images</title><source>AIP Journals Complete</source><creator>Gawande, Ujwalla ; Golhar, Yogesh ; Jain, Sachin</creator><contributor>Gawande, Snehal P. ; Rajguru, Vijaya S. ; Adhau, Sarala P.</contributor><creatorcontrib>Gawande, Ujwalla ; Golhar, Yogesh ; Jain, Sachin ; Gawande, Snehal P. ; Rajguru, Vijaya S. ; Adhau, Sarala P.</creatorcontrib><description>Brain tumor detection and categorization are crucial tasks in the field of medical imaging, essential for accurate diagnosis and tailored treatment strategies. In this paper, we present an innovative approach for brain tumor detection and categorization using Computed Tomography (CT) scan images. The proposed approach integrates advanced image processing methods and machine learning algorithms to achieve precise tumor identification and differentiation among various tumor types. Leveraging the inherent advantages of CT scans, our technique holds the potential to contribute significantly to early detection and improved patient outcomes.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0240293</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Algorithms ; Brain ; Classification ; Computed tomography ; Image processing ; Machine learning ; Medical imaging ; Tumors</subject><ispartof>AIP conference proceedings, 2024, Vol.3188 (1)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/5.0240293$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,777,781,786,787,791,4498,23911,23912,25121,27905,27906,76133</link.rule.ids></links><search><contributor>Gawande, Snehal P.</contributor><contributor>Rajguru, Vijaya S.</contributor><contributor>Adhau, Sarala P.</contributor><creatorcontrib>Gawande, Ujwalla</creatorcontrib><creatorcontrib>Golhar, Yogesh</creatorcontrib><creatorcontrib>Jain, Sachin</creatorcontrib><title>Novel approach for detection and categorization of brain tumours by using CT scan images</title><title>AIP conference proceedings</title><description>Brain tumor detection and categorization are crucial tasks in the field of medical imaging, essential for accurate diagnosis and tailored treatment strategies. In this paper, we present an innovative approach for brain tumor detection and categorization using Computed Tomography (CT) scan images. The proposed approach integrates advanced image processing methods and machine learning algorithms to achieve precise tumor identification and differentiation among various tumor types. Leveraging the inherent advantages of CT scans, our technique holds the potential to contribute significantly to early detection and improved patient outcomes.</description><subject>Algorithms</subject><subject>Brain</subject><subject>Classification</subject><subject>Computed tomography</subject><subject>Image processing</subject><subject>Machine learning</subject><subject>Medical imaging</subject><subject>Tumors</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2024</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotkF1LwzAUhoMoWKcX_oOAd0JnPpomuZSiUxh6s4vdhZM0nR1bU5NWmL_euu3qwOHhPc95EbqnZE5JyZ_EnLCCMM0vUEaFoLksaXmJMkJ0kbOCr6_RTUpbMiFSqgytP8KP32Ho-xjAfeEmRFz7wbuhDR2GrsYOBr8Jsf2F4yo02EZoOzyM-zDGhO0Bj6ntNrha4eSgw-0eNj7doqsGdsnfnecMrV5fVtVbvvxcvFfPy7wvOc994xRRQthaeCY8aGaJptZbkNYq6aRswNbUWUa05w1oJYFrWShVUyLA8xl6OMVO_t-jT4PZTlbddNFwWrBSS6XFRD2eqOTa4fiH6ePkGQ-GEvNfnBHmXBz_A9BvYJQ</recordid><startdate>20241210</startdate><enddate>20241210</enddate><creator>Gawande, Ujwalla</creator><creator>Golhar, Yogesh</creator><creator>Jain, Sachin</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20241210</creationdate><title>Novel approach for detection and categorization of brain tumours by using CT scan images</title><author>Gawande, Ujwalla ; Golhar, Yogesh ; Jain, Sachin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p633-efc80855bd5e25ea92b091beba7bb87c77fabd1cb209e3fa987a397488d105ae3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Brain</topic><topic>Classification</topic><topic>Computed tomography</topic><topic>Image processing</topic><topic>Machine learning</topic><topic>Medical imaging</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gawande, Ujwalla</creatorcontrib><creatorcontrib>Golhar, Yogesh</creatorcontrib><creatorcontrib>Jain, Sachin</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gawande, Ujwalla</au><au>Golhar, Yogesh</au><au>Jain, Sachin</au><au>Gawande, Snehal P.</au><au>Rajguru, Vijaya S.</au><au>Adhau, Sarala P.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Novel approach for detection and categorization of brain tumours by using CT scan images</atitle><btitle>AIP conference proceedings</btitle><date>2024-12-10</date><risdate>2024</risdate><volume>3188</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>Brain tumor detection and categorization are crucial tasks in the field of medical imaging, essential for accurate diagnosis and tailored treatment strategies. In this paper, we present an innovative approach for brain tumor detection and categorization using Computed Tomography (CT) scan images. The proposed approach integrates advanced image processing methods and machine learning algorithms to achieve precise tumor identification and differentiation among various tumor types. Leveraging the inherent advantages of CT scans, our technique holds the potential to contribute significantly to early detection and improved patient outcomes.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0240293</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-243X |
ispartof | AIP conference proceedings, 2024, Vol.3188 (1) |
issn | 0094-243X 1551-7616 |
language | eng |
recordid | cdi_proquest_journals_3142697895 |
source | AIP Journals Complete |
subjects | Algorithms Brain Classification Computed tomography Image processing Machine learning Medical imaging Tumors |
title | Novel approach for detection and categorization of brain tumours by using CT scan images |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T02%3A19%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Novel%20approach%20for%20detection%20and%20categorization%20of%20brain%20tumours%20by%20using%20CT%20scan%20images&rft.btitle=AIP%20conference%20proceedings&rft.au=Gawande,%20Ujwalla&rft.date=2024-12-10&rft.volume=3188&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0240293&rft_dat=%3Cproquest_scita%3E3142697895%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3142697895&rft_id=info:pmid/&rfr_iscdi=true |