Novel approach for detection and categorization of brain tumours by using CT scan images

Brain tumor detection and categorization are crucial tasks in the field of medical imaging, essential for accurate diagnosis and tailored treatment strategies. In this paper, we present an innovative approach for brain tumor detection and categorization using Computed Tomography (CT) scan images. Th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Gawande, Ujwalla, Golhar, Yogesh, Jain, Sachin
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title
container_volume 3188
creator Gawande, Ujwalla
Golhar, Yogesh
Jain, Sachin
description Brain tumor detection and categorization are crucial tasks in the field of medical imaging, essential for accurate diagnosis and tailored treatment strategies. In this paper, we present an innovative approach for brain tumor detection and categorization using Computed Tomography (CT) scan images. The proposed approach integrates advanced image processing methods and machine learning algorithms to achieve precise tumor identification and differentiation among various tumor types. Leveraging the inherent advantages of CT scans, our technique holds the potential to contribute significantly to early detection and improved patient outcomes.
doi_str_mv 10.1063/5.0240293
format Conference Proceeding
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_3142697895</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3142697895</sourcerecordid><originalsourceid>FETCH-LOGICAL-p633-efc80855bd5e25ea92b091beba7bb87c77fabd1cb209e3fa987a397488d105ae3</originalsourceid><addsrcrecordid>eNotkF1LwzAUhoMoWKcX_oOAd0JnPpomuZSiUxh6s4vdhZM0nR1bU5NWmL_euu3qwOHhPc95EbqnZE5JyZ_EnLCCMM0vUEaFoLksaXmJMkJ0kbOCr6_RTUpbMiFSqgytP8KP32Ho-xjAfeEmRFz7wbuhDR2GrsYOBr8Jsf2F4yo02EZoOzyM-zDGhO0Bj6ntNrha4eSgw-0eNj7doqsGdsnfnecMrV5fVtVbvvxcvFfPy7wvOc994xRRQthaeCY8aGaJptZbkNYq6aRswNbUWUa05w1oJYFrWShVUyLA8xl6OMVO_t-jT4PZTlbddNFwWrBSS6XFRD2eqOTa4fiH6ePkGQ-GEvNfnBHmXBz_A9BvYJQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>3142697895</pqid></control><display><type>conference_proceeding</type><title>Novel approach for detection and categorization of brain tumours by using CT scan images</title><source>AIP Journals Complete</source><creator>Gawande, Ujwalla ; Golhar, Yogesh ; Jain, Sachin</creator><contributor>Gawande, Snehal P. ; Rajguru, Vijaya S. ; Adhau, Sarala P.</contributor><creatorcontrib>Gawande, Ujwalla ; Golhar, Yogesh ; Jain, Sachin ; Gawande, Snehal P. ; Rajguru, Vijaya S. ; Adhau, Sarala P.</creatorcontrib><description>Brain tumor detection and categorization are crucial tasks in the field of medical imaging, essential for accurate diagnosis and tailored treatment strategies. In this paper, we present an innovative approach for brain tumor detection and categorization using Computed Tomography (CT) scan images. The proposed approach integrates advanced image processing methods and machine learning algorithms to achieve precise tumor identification and differentiation among various tumor types. Leveraging the inherent advantages of CT scans, our technique holds the potential to contribute significantly to early detection and improved patient outcomes.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0240293</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Algorithms ; Brain ; Classification ; Computed tomography ; Image processing ; Machine learning ; Medical imaging ; Tumors</subject><ispartof>AIP conference proceedings, 2024, Vol.3188 (1)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/5.0240293$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,777,781,786,787,791,4498,23911,23912,25121,27905,27906,76133</link.rule.ids></links><search><contributor>Gawande, Snehal P.</contributor><contributor>Rajguru, Vijaya S.</contributor><contributor>Adhau, Sarala P.</contributor><creatorcontrib>Gawande, Ujwalla</creatorcontrib><creatorcontrib>Golhar, Yogesh</creatorcontrib><creatorcontrib>Jain, Sachin</creatorcontrib><title>Novel approach for detection and categorization of brain tumours by using CT scan images</title><title>AIP conference proceedings</title><description>Brain tumor detection and categorization are crucial tasks in the field of medical imaging, essential for accurate diagnosis and tailored treatment strategies. In this paper, we present an innovative approach for brain tumor detection and categorization using Computed Tomography (CT) scan images. The proposed approach integrates advanced image processing methods and machine learning algorithms to achieve precise tumor identification and differentiation among various tumor types. Leveraging the inherent advantages of CT scans, our technique holds the potential to contribute significantly to early detection and improved patient outcomes.</description><subject>Algorithms</subject><subject>Brain</subject><subject>Classification</subject><subject>Computed tomography</subject><subject>Image processing</subject><subject>Machine learning</subject><subject>Medical imaging</subject><subject>Tumors</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2024</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotkF1LwzAUhoMoWKcX_oOAd0JnPpomuZSiUxh6s4vdhZM0nR1bU5NWmL_euu3qwOHhPc95EbqnZE5JyZ_EnLCCMM0vUEaFoLksaXmJMkJ0kbOCr6_RTUpbMiFSqgytP8KP32Ho-xjAfeEmRFz7wbuhDR2GrsYOBr8Jsf2F4yo02EZoOzyM-zDGhO0Bj6ntNrha4eSgw-0eNj7doqsGdsnfnecMrV5fVtVbvvxcvFfPy7wvOc994xRRQthaeCY8aGaJptZbkNYq6aRswNbUWUa05w1oJYFrWShVUyLA8xl6OMVO_t-jT4PZTlbddNFwWrBSS6XFRD2eqOTa4fiH6ePkGQ-GEvNfnBHmXBz_A9BvYJQ</recordid><startdate>20241210</startdate><enddate>20241210</enddate><creator>Gawande, Ujwalla</creator><creator>Golhar, Yogesh</creator><creator>Jain, Sachin</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20241210</creationdate><title>Novel approach for detection and categorization of brain tumours by using CT scan images</title><author>Gawande, Ujwalla ; Golhar, Yogesh ; Jain, Sachin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p633-efc80855bd5e25ea92b091beba7bb87c77fabd1cb209e3fa987a397488d105ae3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Brain</topic><topic>Classification</topic><topic>Computed tomography</topic><topic>Image processing</topic><topic>Machine learning</topic><topic>Medical imaging</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gawande, Ujwalla</creatorcontrib><creatorcontrib>Golhar, Yogesh</creatorcontrib><creatorcontrib>Jain, Sachin</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gawande, Ujwalla</au><au>Golhar, Yogesh</au><au>Jain, Sachin</au><au>Gawande, Snehal P.</au><au>Rajguru, Vijaya S.</au><au>Adhau, Sarala P.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Novel approach for detection and categorization of brain tumours by using CT scan images</atitle><btitle>AIP conference proceedings</btitle><date>2024-12-10</date><risdate>2024</risdate><volume>3188</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>Brain tumor detection and categorization are crucial tasks in the field of medical imaging, essential for accurate diagnosis and tailored treatment strategies. In this paper, we present an innovative approach for brain tumor detection and categorization using Computed Tomography (CT) scan images. The proposed approach integrates advanced image processing methods and machine learning algorithms to achieve precise tumor identification and differentiation among various tumor types. Leveraging the inherent advantages of CT scans, our technique holds the potential to contribute significantly to early detection and improved patient outcomes.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0240293</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP conference proceedings, 2024, Vol.3188 (1)
issn 0094-243X
1551-7616
language eng
recordid cdi_proquest_journals_3142697895
source AIP Journals Complete
subjects Algorithms
Brain
Classification
Computed tomography
Image processing
Machine learning
Medical imaging
Tumors
title Novel approach for detection and categorization of brain tumours by using CT scan images
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T02%3A19%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Novel%20approach%20for%20detection%20and%20categorization%20of%20brain%20tumours%20by%20using%20CT%20scan%20images&rft.btitle=AIP%20conference%20proceedings&rft.au=Gawande,%20Ujwalla&rft.date=2024-12-10&rft.volume=3188&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0240293&rft_dat=%3Cproquest_scita%3E3142697895%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3142697895&rft_id=info:pmid/&rfr_iscdi=true