Results about structural stability and the existence of limit cycles for piecewise smooth linear differential equations separated by the unit circle

In this article, we investigate the structural stability and the existence of limit cycles in families of piecewise smooth differential equations where the unit circle serves as the discontinuity region. Our study encompasses families featuring singularities of center or saddle type, both visible an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:São Paulo Journal of Mathematical Sciences 2024, Vol.18 (2), p.1305-1341
Hauptverfasser: Caldas, Mayara D. A., Martins, Ricardo M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1341
container_issue 2
container_start_page 1305
container_title São Paulo Journal of Mathematical Sciences
container_volume 18
creator Caldas, Mayara D. A.
Martins, Ricardo M.
description In this article, we investigate the structural stability and the existence of limit cycles in families of piecewise smooth differential equations where the unit circle serves as the discontinuity region. Our study encompasses families featuring singularities of center or saddle type, both visible and invisible, as well as those without any singularities. For the family that admits only constant vector fields, we describe the dynamics over S 1 and present a result regarding structural stability. For the other families, we provide an upper bound for the number of limit cycles and present examples that illustrate the maximum number of limit cycles that can be realized. In the constant-center case, we present a proof of the existence and stability of the limit cycle using elementary analytical geometry. Additionally, we discuss the presence of homoclinic cycles in saddle-center cases for such differential equations, taking into account Filippov’s convention.
doi_str_mv 10.1007/s40863-024-00433-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3142601019</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3142601019</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-1cf0815ef9f2ddcfc73b854d128a0d6bab283ef234e8d90b64644ef5d86bdf5f3</originalsourceid><addsrcrecordid>eNp9kctqHDEQRUVIwIPtH8hKkHUnpUd3q5fB5GEwBIy9FmqpZMv0tMYqNcn8Rz44sieQXWpTtTj31OIy9l7ARwEwfiINZlAdSN0BaKU684btpBJDN4E0b9lOTEZ2wwTjGbskeoI2vR6nHnbs9y3StlTibs5b5VTL5utW3NJON6cl1SN3a-D1ETn-SlRx9chz5Evap8r90S9IPObCDwk9_kyEnPY518dGrOgKDylGLLjW1KT4vLma8kqc8OCKqxj4fHy1b-uLL5UmvGDvolsIL__uc3b_9cvd1ffu5se366vPN52XI9RO-AhG9BinKEPw0Y9qNr0OQhoHYZjdLI3CKJVGEyaYBz1ojbEPZphD7KM6Zx9O3kPJzxtStU95K2t7aZXQcgABYmqUPFG-ZKKC0R5K2rtytALsSwH2VIBtBdjXAqxpIXUKUYPXByz_1P9J_QHqBI0a</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3142601019</pqid></control><display><type>article</type><title>Results about structural stability and the existence of limit cycles for piecewise smooth linear differential equations separated by the unit circle</title><source>Springer Nature - Complete Springer Journals</source><creator>Caldas, Mayara D. A. ; Martins, Ricardo M.</creator><creatorcontrib>Caldas, Mayara D. A. ; Martins, Ricardo M.</creatorcontrib><description>In this article, we investigate the structural stability and the existence of limit cycles in families of piecewise smooth differential equations where the unit circle serves as the discontinuity region. Our study encompasses families featuring singularities of center or saddle type, both visible and invisible, as well as those without any singularities. For the family that admits only constant vector fields, we describe the dynamics over S 1 and present a result regarding structural stability. For the other families, we provide an upper bound for the number of limit cycles and present examples that illustrate the maximum number of limit cycles that can be realized. In the constant-center case, we present a proof of the existence and stability of the limit cycle using elementary analytical geometry. Additionally, we discuss the presence of homoclinic cycles in saddle-center cases for such differential equations, taking into account Filippov’s convention.</description><identifier>ISSN: 1982-6907</identifier><identifier>EISSN: 2316-9028</identifier><identifier>EISSN: 2306-9028</identifier><identifier>DOI: 10.1007/s40863-024-00433-8</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Differential equations ; Dynamic structural analysis ; Fields (mathematics) ; Mathematics ; Mathematics and Statistics ; Singularity (mathematics) ; Stability and Bifurcation - Memorial Issue Dedicated to Jorge Sotomayor ; Structural stability ; Upper bounds</subject><ispartof>São Paulo Journal of Mathematical Sciences, 2024, Vol.18 (2), p.1305-1341</ispartof><rights>Instituto de Matemática e Estatística da Universidade de São Paulo 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>Copyright Springer Nature B.V. 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-1cf0815ef9f2ddcfc73b854d128a0d6bab283ef234e8d90b64644ef5d86bdf5f3</cites><orcidid>0000-0002-2635-2720</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40863-024-00433-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s40863-024-00433-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,778,782,27911,27912,41475,42544,51306</link.rule.ids></links><search><creatorcontrib>Caldas, Mayara D. A.</creatorcontrib><creatorcontrib>Martins, Ricardo M.</creatorcontrib><title>Results about structural stability and the existence of limit cycles for piecewise smooth linear differential equations separated by the unit circle</title><title>São Paulo Journal of Mathematical Sciences</title><addtitle>São Paulo J. Math. Sci</addtitle><description>In this article, we investigate the structural stability and the existence of limit cycles in families of piecewise smooth differential equations where the unit circle serves as the discontinuity region. Our study encompasses families featuring singularities of center or saddle type, both visible and invisible, as well as those without any singularities. For the family that admits only constant vector fields, we describe the dynamics over S 1 and present a result regarding structural stability. For the other families, we provide an upper bound for the number of limit cycles and present examples that illustrate the maximum number of limit cycles that can be realized. In the constant-center case, we present a proof of the existence and stability of the limit cycle using elementary analytical geometry. Additionally, we discuss the presence of homoclinic cycles in saddle-center cases for such differential equations, taking into account Filippov’s convention.</description><subject>Differential equations</subject><subject>Dynamic structural analysis</subject><subject>Fields (mathematics)</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Singularity (mathematics)</subject><subject>Stability and Bifurcation - Memorial Issue Dedicated to Jorge Sotomayor</subject><subject>Structural stability</subject><subject>Upper bounds</subject><issn>1982-6907</issn><issn>2316-9028</issn><issn>2306-9028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kctqHDEQRUVIwIPtH8hKkHUnpUd3q5fB5GEwBIy9FmqpZMv0tMYqNcn8Rz44sieQXWpTtTj31OIy9l7ARwEwfiINZlAdSN0BaKU684btpBJDN4E0b9lOTEZ2wwTjGbskeoI2vR6nHnbs9y3StlTibs5b5VTL5utW3NJON6cl1SN3a-D1ETn-SlRx9chz5Evap8r90S9IPObCDwk9_kyEnPY518dGrOgKDylGLLjW1KT4vLma8kqc8OCKqxj4fHy1b-uLL5UmvGDvolsIL__uc3b_9cvd1ffu5se366vPN52XI9RO-AhG9BinKEPw0Y9qNr0OQhoHYZjdLI3CKJVGEyaYBz1ojbEPZphD7KM6Zx9O3kPJzxtStU95K2t7aZXQcgABYmqUPFG-ZKKC0R5K2rtytALsSwH2VIBtBdjXAqxpIXUKUYPXByz_1P9J_QHqBI0a</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Caldas, Mayara D. A.</creator><creator>Martins, Ricardo M.</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-2635-2720</orcidid></search><sort><creationdate>2024</creationdate><title>Results about structural stability and the existence of limit cycles for piecewise smooth linear differential equations separated by the unit circle</title><author>Caldas, Mayara D. A. ; Martins, Ricardo M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-1cf0815ef9f2ddcfc73b854d128a0d6bab283ef234e8d90b64644ef5d86bdf5f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Differential equations</topic><topic>Dynamic structural analysis</topic><topic>Fields (mathematics)</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Singularity (mathematics)</topic><topic>Stability and Bifurcation - Memorial Issue Dedicated to Jorge Sotomayor</topic><topic>Structural stability</topic><topic>Upper bounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Caldas, Mayara D. A.</creatorcontrib><creatorcontrib>Martins, Ricardo M.</creatorcontrib><collection>CrossRef</collection><jtitle>São Paulo Journal of Mathematical Sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Caldas, Mayara D. A.</au><au>Martins, Ricardo M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Results about structural stability and the existence of limit cycles for piecewise smooth linear differential equations separated by the unit circle</atitle><jtitle>São Paulo Journal of Mathematical Sciences</jtitle><stitle>São Paulo J. Math. Sci</stitle><date>2024</date><risdate>2024</risdate><volume>18</volume><issue>2</issue><spage>1305</spage><epage>1341</epage><pages>1305-1341</pages><issn>1982-6907</issn><eissn>2316-9028</eissn><eissn>2306-9028</eissn><abstract>In this article, we investigate the structural stability and the existence of limit cycles in families of piecewise smooth differential equations where the unit circle serves as the discontinuity region. Our study encompasses families featuring singularities of center or saddle type, both visible and invisible, as well as those without any singularities. For the family that admits only constant vector fields, we describe the dynamics over S 1 and present a result regarding structural stability. For the other families, we provide an upper bound for the number of limit cycles and present examples that illustrate the maximum number of limit cycles that can be realized. In the constant-center case, we present a proof of the existence and stability of the limit cycle using elementary analytical geometry. Additionally, we discuss the presence of homoclinic cycles in saddle-center cases for such differential equations, taking into account Filippov’s convention.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s40863-024-00433-8</doi><tpages>37</tpages><orcidid>https://orcid.org/0000-0002-2635-2720</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1982-6907
ispartof São Paulo Journal of Mathematical Sciences, 2024, Vol.18 (2), p.1305-1341
issn 1982-6907
2316-9028
2306-9028
language eng
recordid cdi_proquest_journals_3142601019
source Springer Nature - Complete Springer Journals
subjects Differential equations
Dynamic structural analysis
Fields (mathematics)
Mathematics
Mathematics and Statistics
Singularity (mathematics)
Stability and Bifurcation - Memorial Issue Dedicated to Jorge Sotomayor
Structural stability
Upper bounds
title Results about structural stability and the existence of limit cycles for piecewise smooth linear differential equations separated by the unit circle
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T03%3A09%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Results%20about%20structural%20stability%20and%20the%20existence%20of%20limit%20cycles%20for%20piecewise%20smooth%20linear%20differential%20equations%20separated%20by%20the%20unit%20circle&rft.jtitle=S%C3%A3o%20Paulo%20Journal%20of%20Mathematical%20Sciences&rft.au=Caldas,%20Mayara%20D.%20A.&rft.date=2024&rft.volume=18&rft.issue=2&rft.spage=1305&rft.epage=1341&rft.pages=1305-1341&rft.issn=1982-6907&rft.eissn=2316-9028&rft_id=info:doi/10.1007/s40863-024-00433-8&rft_dat=%3Cproquest_cross%3E3142601019%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3142601019&rft_id=info:pmid/&rfr_iscdi=true