Results about structural stability and the existence of limit cycles for piecewise smooth linear differential equations separated by the unit circle
In this article, we investigate the structural stability and the existence of limit cycles in families of piecewise smooth differential equations where the unit circle serves as the discontinuity region. Our study encompasses families featuring singularities of center or saddle type, both visible an...
Gespeichert in:
Veröffentlicht in: | São Paulo Journal of Mathematical Sciences 2024, Vol.18 (2), p.1305-1341 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1341 |
---|---|
container_issue | 2 |
container_start_page | 1305 |
container_title | São Paulo Journal of Mathematical Sciences |
container_volume | 18 |
creator | Caldas, Mayara D. A. Martins, Ricardo M. |
description | In this article, we investigate the structural stability and the existence of limit cycles in families of piecewise smooth differential equations where the unit circle serves as the discontinuity region. Our study encompasses families featuring singularities of center or saddle type, both visible and invisible, as well as those without any singularities. For the family that admits only constant vector fields, we describe the dynamics over
S
1
and present a result regarding structural stability. For the other families, we provide an upper bound for the number of limit cycles and present examples that illustrate the maximum number of limit cycles that can be realized. In the constant-center case, we present a proof of the existence and stability of the limit cycle using elementary analytical geometry. Additionally, we discuss the presence of homoclinic cycles in saddle-center cases for such differential equations, taking into account Filippov’s convention. |
doi_str_mv | 10.1007/s40863-024-00433-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3142601019</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3142601019</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-1cf0815ef9f2ddcfc73b854d128a0d6bab283ef234e8d90b64644ef5d86bdf5f3</originalsourceid><addsrcrecordid>eNp9kctqHDEQRUVIwIPtH8hKkHUnpUd3q5fB5GEwBIy9FmqpZMv0tMYqNcn8Rz44sieQXWpTtTj31OIy9l7ARwEwfiINZlAdSN0BaKU684btpBJDN4E0b9lOTEZ2wwTjGbskeoI2vR6nHnbs9y3StlTibs5b5VTL5utW3NJON6cl1SN3a-D1ETn-SlRx9chz5Evap8r90S9IPObCDwk9_kyEnPY518dGrOgKDylGLLjW1KT4vLma8kqc8OCKqxj4fHy1b-uLL5UmvGDvolsIL__uc3b_9cvd1ffu5se366vPN52XI9RO-AhG9BinKEPw0Y9qNr0OQhoHYZjdLI3CKJVGEyaYBz1ojbEPZphD7KM6Zx9O3kPJzxtStU95K2t7aZXQcgABYmqUPFG-ZKKC0R5K2rtytALsSwH2VIBtBdjXAqxpIXUKUYPXByz_1P9J_QHqBI0a</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3142601019</pqid></control><display><type>article</type><title>Results about structural stability and the existence of limit cycles for piecewise smooth linear differential equations separated by the unit circle</title><source>Springer Nature - Complete Springer Journals</source><creator>Caldas, Mayara D. A. ; Martins, Ricardo M.</creator><creatorcontrib>Caldas, Mayara D. A. ; Martins, Ricardo M.</creatorcontrib><description>In this article, we investigate the structural stability and the existence of limit cycles in families of piecewise smooth differential equations where the unit circle serves as the discontinuity region. Our study encompasses families featuring singularities of center or saddle type, both visible and invisible, as well as those without any singularities. For the family that admits only constant vector fields, we describe the dynamics over
S
1
and present a result regarding structural stability. For the other families, we provide an upper bound for the number of limit cycles and present examples that illustrate the maximum number of limit cycles that can be realized. In the constant-center case, we present a proof of the existence and stability of the limit cycle using elementary analytical geometry. Additionally, we discuss the presence of homoclinic cycles in saddle-center cases for such differential equations, taking into account Filippov’s convention.</description><identifier>ISSN: 1982-6907</identifier><identifier>EISSN: 2316-9028</identifier><identifier>EISSN: 2306-9028</identifier><identifier>DOI: 10.1007/s40863-024-00433-8</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Differential equations ; Dynamic structural analysis ; Fields (mathematics) ; Mathematics ; Mathematics and Statistics ; Singularity (mathematics) ; Stability and Bifurcation - Memorial Issue Dedicated to Jorge Sotomayor ; Structural stability ; Upper bounds</subject><ispartof>São Paulo Journal of Mathematical Sciences, 2024, Vol.18 (2), p.1305-1341</ispartof><rights>Instituto de Matemática e Estatística da Universidade de São Paulo 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>Copyright Springer Nature B.V. 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-1cf0815ef9f2ddcfc73b854d128a0d6bab283ef234e8d90b64644ef5d86bdf5f3</cites><orcidid>0000-0002-2635-2720</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40863-024-00433-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s40863-024-00433-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,778,782,27911,27912,41475,42544,51306</link.rule.ids></links><search><creatorcontrib>Caldas, Mayara D. A.</creatorcontrib><creatorcontrib>Martins, Ricardo M.</creatorcontrib><title>Results about structural stability and the existence of limit cycles for piecewise smooth linear differential equations separated by the unit circle</title><title>São Paulo Journal of Mathematical Sciences</title><addtitle>São Paulo J. Math. Sci</addtitle><description>In this article, we investigate the structural stability and the existence of limit cycles in families of piecewise smooth differential equations where the unit circle serves as the discontinuity region. Our study encompasses families featuring singularities of center or saddle type, both visible and invisible, as well as those without any singularities. For the family that admits only constant vector fields, we describe the dynamics over
S
1
and present a result regarding structural stability. For the other families, we provide an upper bound for the number of limit cycles and present examples that illustrate the maximum number of limit cycles that can be realized. In the constant-center case, we present a proof of the existence and stability of the limit cycle using elementary analytical geometry. Additionally, we discuss the presence of homoclinic cycles in saddle-center cases for such differential equations, taking into account Filippov’s convention.</description><subject>Differential equations</subject><subject>Dynamic structural analysis</subject><subject>Fields (mathematics)</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Singularity (mathematics)</subject><subject>Stability and Bifurcation - Memorial Issue Dedicated to Jorge Sotomayor</subject><subject>Structural stability</subject><subject>Upper bounds</subject><issn>1982-6907</issn><issn>2316-9028</issn><issn>2306-9028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kctqHDEQRUVIwIPtH8hKkHUnpUd3q5fB5GEwBIy9FmqpZMv0tMYqNcn8Rz44sieQXWpTtTj31OIy9l7ARwEwfiINZlAdSN0BaKU684btpBJDN4E0b9lOTEZ2wwTjGbskeoI2vR6nHnbs9y3StlTibs5b5VTL5utW3NJON6cl1SN3a-D1ETn-SlRx9chz5Evap8r90S9IPObCDwk9_kyEnPY518dGrOgKDylGLLjW1KT4vLma8kqc8OCKqxj4fHy1b-uLL5UmvGDvolsIL__uc3b_9cvd1ffu5se366vPN52XI9RO-AhG9BinKEPw0Y9qNr0OQhoHYZjdLI3CKJVGEyaYBz1ojbEPZphD7KM6Zx9O3kPJzxtStU95K2t7aZXQcgABYmqUPFG-ZKKC0R5K2rtytALsSwH2VIBtBdjXAqxpIXUKUYPXByz_1P9J_QHqBI0a</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Caldas, Mayara D. A.</creator><creator>Martins, Ricardo M.</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-2635-2720</orcidid></search><sort><creationdate>2024</creationdate><title>Results about structural stability and the existence of limit cycles for piecewise smooth linear differential equations separated by the unit circle</title><author>Caldas, Mayara D. A. ; Martins, Ricardo M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-1cf0815ef9f2ddcfc73b854d128a0d6bab283ef234e8d90b64644ef5d86bdf5f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Differential equations</topic><topic>Dynamic structural analysis</topic><topic>Fields (mathematics)</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Singularity (mathematics)</topic><topic>Stability and Bifurcation - Memorial Issue Dedicated to Jorge Sotomayor</topic><topic>Structural stability</topic><topic>Upper bounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Caldas, Mayara D. A.</creatorcontrib><creatorcontrib>Martins, Ricardo M.</creatorcontrib><collection>CrossRef</collection><jtitle>São Paulo Journal of Mathematical Sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Caldas, Mayara D. A.</au><au>Martins, Ricardo M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Results about structural stability and the existence of limit cycles for piecewise smooth linear differential equations separated by the unit circle</atitle><jtitle>São Paulo Journal of Mathematical Sciences</jtitle><stitle>São Paulo J. Math. Sci</stitle><date>2024</date><risdate>2024</risdate><volume>18</volume><issue>2</issue><spage>1305</spage><epage>1341</epage><pages>1305-1341</pages><issn>1982-6907</issn><eissn>2316-9028</eissn><eissn>2306-9028</eissn><abstract>In this article, we investigate the structural stability and the existence of limit cycles in families of piecewise smooth differential equations where the unit circle serves as the discontinuity region. Our study encompasses families featuring singularities of center or saddle type, both visible and invisible, as well as those without any singularities. For the family that admits only constant vector fields, we describe the dynamics over
S
1
and present a result regarding structural stability. For the other families, we provide an upper bound for the number of limit cycles and present examples that illustrate the maximum number of limit cycles that can be realized. In the constant-center case, we present a proof of the existence and stability of the limit cycle using elementary analytical geometry. Additionally, we discuss the presence of homoclinic cycles in saddle-center cases for such differential equations, taking into account Filippov’s convention.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s40863-024-00433-8</doi><tpages>37</tpages><orcidid>https://orcid.org/0000-0002-2635-2720</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1982-6907 |
ispartof | São Paulo Journal of Mathematical Sciences, 2024, Vol.18 (2), p.1305-1341 |
issn | 1982-6907 2316-9028 2306-9028 |
language | eng |
recordid | cdi_proquest_journals_3142601019 |
source | Springer Nature - Complete Springer Journals |
subjects | Differential equations Dynamic structural analysis Fields (mathematics) Mathematics Mathematics and Statistics Singularity (mathematics) Stability and Bifurcation - Memorial Issue Dedicated to Jorge Sotomayor Structural stability Upper bounds |
title | Results about structural stability and the existence of limit cycles for piecewise smooth linear differential equations separated by the unit circle |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T03%3A09%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Results%20about%20structural%20stability%20and%20the%20existence%20of%20limit%20cycles%20for%20piecewise%20smooth%20linear%20differential%20equations%20separated%20by%20the%20unit%20circle&rft.jtitle=S%C3%A3o%20Paulo%20Journal%20of%20Mathematical%20Sciences&rft.au=Caldas,%20Mayara%20D.%20A.&rft.date=2024&rft.volume=18&rft.issue=2&rft.spage=1305&rft.epage=1341&rft.pages=1305-1341&rft.issn=1982-6907&rft.eissn=2316-9028&rft_id=info:doi/10.1007/s40863-024-00433-8&rft_dat=%3Cproquest_cross%3E3142601019%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3142601019&rft_id=info:pmid/&rfr_iscdi=true |